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Abstract 

An impulse response train is a signal that can be described a s  the response of a 
linear time-invariant system to a sequence of equally spaced impulses of varying areas. 
The impdse r e c p ~ n a e  assnrriated with such a signal is called the kernel of the impulse 
response train. 

A variety of physical systems generate signals in a manner indicating that the sig- 
nals can be modeled by impulse response trains. Examples of such signals are  the 
voiced sounds of speech, and the individual tones of wind instruments. Knowledge of 
the kernel of such physically generated signals would be useful for two reasons. First, 
the physical generating system can be simulated by a linear time-invariant system with 
the kernel a s  impulse response. Second, the class of signals generated by the system 
can be characterized by the kernel. 

This report shows how to find the kernel of an impulse response train directly from 
the signal itself. The method assumes that the spacing of the impulses is known, but 
requires no knowledge of their areas,  and also that the impulse response train is of 
finite duration. Since the kernel of an impulse response train is rarely unique, the 
method cannot always find the impulse response of the system that actually generated 
the signal. Rather, the method finds the kernel of shortest duration. For  impulse 
response trains of finite duration there is only one such kernel, and all  other kernels 
a r e  impulse response trains having it as their kernel. Therefore, for the purposes of 
simulating the system and characterizing the signal, the kernel of minimum duration is 
sufficient . 

The method used to find the kernel involves only matrix multiplication and the 
solving of simultaneous linear equations. Once the kernel is found, the impulse areas  
can be determined, again, by the solution of simultaneous linear equations. A l l  of these 
operations can be routinely carried out by an electronic digital computer. 
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I. IMPULSE RESPONSE TRAINS 

k---? 

An impulse response train (IRT) is a signal that can be described a s  the response 
of a linear time-invariant system to a sequence of equally spaced impulses of varying 
areas. An example of an IRT is shown in Fig. 1. The impulse response associated 

---* t - 

Fig. 1. The impulse response train s(t) is the response of the linear time- 
invariant system with impulse response h(t) to  the sequence of 
equally spaced impulses of varying area a(t). 

with a given IRT wi l l  be called the kernel of the IRT. Thus, in Fig. 1, h(t) is the kernel 
of s(t). 

It is our objective to show how the kernel of a given IRT can be determined directly 
from the IRT itself, knowing only the spacing of the driving impulses, but nothing about 
their areas. 

1.1 IMPULSE RESPONSE TRAINS AND PHYSICAL SYSTEMS 

As motivation for finding the kernel of an IRT, we note that a variety of physical sys- 
tems generate signals in a manner indicating that the signals can be well modeled by 
IRT. These physical systems generate signals by driving what essentially (over the 
time interval of interest) is a linear time-invariant system by regularly recurring pulses 
of variable amplitude, as shown in Fig. 2. Since these driving pulses can themselves 
be thought of a s  the output of a linear system driven by regularly spaced impulses, the 
generated signal can be modeled as the response of a composite linear time-invariant 

Fig. 2. A physical generating system that generates signals by driving a linear 
time-invariant system with a sequence of equally spaced impulses of 
varying amplitude. 
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system, a s  shown in Fig. 3. Examples of signals generated in this manner a re  the 
voiced sounds of speech,’ and the individual tones of wind instruments. 2 

I 1 

I Composite linear system with impulse 
response = convolution ( * ) of the two 
waveforms shown 

Impulses of varying area 
spaced T sec apart Output of the generating system model 

Fig. 3. Model of the physical generating system of Fig. 2. The output of this 
system is the same a s  that of Fig. 2. The impulse response of the 
composite linear system is the kernel of the output signal. 

A knowledge of the impulse response of this composite linear system, which is then 
the kernel of the generated signal, is useful for two reasons. (i) It suggests a means of 
simulation of the physical system. The system could be simulated by a linear time- 
invariant system, with the kernel a s  impulse response, driven by impulses with the 
appropriate spacing and areas. 
by short sharp pulses. 
this manner.3’ (ii) It is characteristic of the signals generated by the physical system. 
Since the generated signal is a linear combination of delayed versions of the kernel, the 
kernel is the fundamental Itbuilding blockt1 of the signal. A s  an example of the utility of 
such a characterization, a knowledge of the kernel has been’used to  construct rejection 
filters for these types of signals. 

In practice, of course, the impulses a r e  approximated 
Vowel sounds of speech have been successfully synthesized in 

5 

Given that it i s  worth while to  find the kernel, how do we go about i t?  If successive 
impulse responses do not overlap, then there is no problem because the kernel is obvious 
by inspection, s o  we shall assume that this is not the case. When they do overlap, it 
might be possible to observe the waveform of the driving pulses within the actual 
physical system, and to  make measurements that determine the impulse response of the 
linear system which they drive. Then the impulse response of the kernel can be deter- 
mined by convolving these two. An alternative method would be to  somehow find the 
kernel directly from the generated signal itself. In this approach it is assumed that the 
kernel somehow imposes a constraint on the generated signal, and that a knowledge of 
this constraint can be used to extract the waveform of the kernel. 
be shown to exist and will be exploited to  find the waveform of the kernel. 

Such a constraint will  

1.2 THE KERNEL OF MINIMUM DURATION 

At this point it should be noted that the same IRT can have more than one kernel. For  
example, a situation could be visualized in which a particular IRT s(t) had a kernel h(t) 
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which was in turn an IRT with the same spacing of impulses. 
the kernel of h(t) is also a kernel of s(t). A s  anocher example, the entire IRT S i t )  could 
be its own kernel, and s(t) could be synthesized by a linear system with impulse response 

s(t), driven by one unit impulse! In fact, this example makes it clear that an IRT with 
just one kernel is of no interest, since that kernel would have to  be the waveform itself. 

Then it Can be seen that 

Since it is possible for the same IRT to have several different kernels, then any 
method attempting to find the kernel directly from the waveform cannot be guaranteed 
to find the waveform of the composite impulse response that actually generated a given 
physical signal. 
is, when it is of finite duration, there is one kernel with particularly appealing prop- 
erties. 
These properties a re  the following. 
impulses that go with the minimum kernel to  synthesize the IRT are  unique. (iii) Any 
other kernel of the IRT is an IRT with the minimum kernel a s  its kernel. 

Moreover, when the beginning and ending of an IRT a re  known, that 

This is the kernel of shortest duration, or minimum kernel as we shall call it. 
(i) The minimum kernel is unique. (ii) The set of 

For  the previously avowed purposes of simulating the generating system and char- 
acterizing the signal, the minimum kernel is clearly sufficient. Furthermore, since 
physically generated signals of the type that we a re  interested in a re  usually of finite 
duration, having to know the beginning and ending is not a serious restriction. Therefore, 
we shall concentrate our efforts on finding the minimum kernel of a given IRT. 

that sample pairs of an IRT taken one period apart a r e  linearly dependent. 
dependence will  be demonstrated in Section 11, and subsequently exploited to  deter- 
mine sample values of the kernel of the IRT. The entire procedure involves 
nothing more complicated than matrix multiplication and the solving of simultaneous 
linear equations. Once the minimum kernel is found. the impulse areas  can be deter- 
mined, again by the solution of simultaneous linear equations. All  of these operations 

can be routinely carried out by an electronic digital computer. 

is equivalent to knowing the pitch period for a voiced sound of speech, or the fundamental 
frequency of a musical tone. These can usually be determined by direct inspection or by 
frequency analysis of the signal (see Section VI). 

The method that will  be used to  find the minimum kernel has a s  its basis the fact 
This 

The method does require knowledge of the spacing of the impulses. This condition 

1.3 DEFINITIONS AND TERMINOLOGY 

It is desirable to have some names by which to refer to the parameters peculiar to  
IRT. The following terminology will be used. Let 

where 
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N1 and N2 a re  integers 

T is a real  positive number 

h(t) is a real  bounded time function of duration CDT, D a positive integer 

{an} is a set of real  numbers. 

Then 

(i) s(t) is  a n  impulse response train. 
(ii) T is the period of s(t). (Note that the use of the term llperiod'l does not imply 

that s(t) i s  periodic.) 
(iii) h(t) is the kernel of the IRT s(t). 
(iv) D is the span of the kernel h(t), that is, the number of periods flspanned" by the 

duration of the kernel. 
(v) the {an} a re  the impulse areas. 
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11. HOMOGENEOUS EQUATIONS RELATING IMPULSE RESPONSE TRAIN SAMPLES 

The characteristic feature of an IRT 

s(t) = 

is that it is 
wave shape 

N2 1 anh(t-(n- l)T) 

1 n= N 

a sum of equally spaced signals {anh(t-(n-1)). each of which has the same 
as the kernel h(t). If the duration of h(t) is less than or equal to the period T ,  

the wave shape of h(t) will  be obvious by inspection. If, however, the duration of h(t) is 
longer than T, then the signals wi l l  overlap, and their waveform can no longer be deter- 
mined by direct inspection of s(t). 

Nevertheless, it might be suspected that the wave shape of s(t) is somehow con- 

We shall now show that such a constraint does indeed exist. 
strained by the fact that it is a sum of equally spaced signals of the same wave shape. 

In particular, it will 
be shown that appropriately chosen samples of the waveform of s(t) a re  alternately 
signed coefficients of a set of linear homogeneous equations with samples of the wave- 
form of h(t) as solutions. 

2.1 HOMOGENEOUS EQUATIONS FOR A PARTICULAR CASE 

It is convenient first to  demonstrate the existence of this relation for a particular 
example. Let us construct an IRT s(t) with the kernel shown in Fig. 4. For  convenience, 
the time origin is chosen at the beginning of the kernel waveform. Let s(t) be the IRT 

N2 

s(t) = 2 anh(t-(n-1)T), 
n=N1 

a portion of which is shown in Fig. 5. The figure also shows the waveforms of the 
{anh(t-(n-1)T)) plotted on separate time axes. 
in sec. 1.3). To show that there exists a relation between the samples of s(t) and the 

kernel h(t), proceed as follows (see Fig. 6 ) .  

Note that h(t) has span 2 (see definitions 

Fig. 4. The kernel h(t). 
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a2h( t  - T )  

t 

a3h(t-  2T)  

t 

a4h ( t  - 3T) 

t 

Fig. 5. Individual waveforms {a*h(t-(n- 1)T)) and their sum s(t). 

Starting at the time origin, and working in both directions, divide the time axis into 
Number these periods 1, 2, 3, . . . in the direction T-long intervals, called periods. 

of increasing time, and 0, -1, -2, . . . in the direction of decreasing time. 
this causes the signal a h(t-(p1)T) to begin in the pth period. 

P 

selected samples a re  spaced T seconds apart. 
in this way a set of periodic samples of s(t). Label the sample from the first 
period sl, Now arbitrarily select a second set 
of periodic samples of s(t), different from the first. Label the sample of this 

Note that 

Now, arbitrarily select one sample of s(t) from each period in such a way that 
Call any set of samples of s(t) chosen 

from the second period s2, 1, etc. 

etc. In both sets then, the subscript scheme is 2,2’  set from the first period s ~ , ~ ,  S 

These two sets of periodic sample pairs a r e  shown in Fig. 7. period, sample in period’ S 

Call two such sets  of periodic samples a set of periodic sample pairs of s(t). ----- 
Consider now the samples of a particular waveform a h(t-(p1)T) taken at the same 

times a s  the set of periodic sample pairs of s(t) selected above. Call these the coinci- 
dent samples of a h(t-(p1)T). Label the two coincident samples of a h(t-(p1)T) in 

P P 
the pth period (that is, the period in which a h(t-(p1)T) begins) a h 

P 

and a h 
P P 1’1 P 1,2’ 
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aoh( t+T)  

I 
r 

I I I I t 

I 1- I I - t 

I 
a3h ( t  -21) 

I I I t 

I period 0 I period 1 I period 2 I period 3 I period 4 

I 

L - 
-T t = O  T 21 3T 41 

I I I 

Fig. 6 .  Division of the time-axis into numbered periods. 

I t 

-T 
so,l  s0,2 

Fig. 7. A set of periodic sample pairs of s(t). 
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a0h (t-T) 

, t 

I 
a2h(t-T) &1,2 a2hl,1 9 2 , 2  

t 

a3h ( t-2T) 

I '  ' I  
t 

I I  ! I  

s ( t )  

I I I / '  t 
-T 2T 3T 4T 

Fig. 8. Coincident samples of the {anh(t-(n-1)T)) for two periods of 
the chosen set of periodic sample pairs of s(t). 

th  respectively. 
a h and a h respectively. Since in our example h(t) has span 2, aph(t-(pl)T)  
will  be zero in all the other periods. Figure 8 shows the coincident samples of the 
{a h(t-(p-1)T))for two periods of the chosen set of periodic sample pairs of s(t), and how 
these coincident samples a re  labeled. 

Now, consider the selected samples of s(t) from any two consecutive periods, say the 
second and third. 
samples of h(t) a s  follows. 

Label the two coincident samples of a h(t-(p-l)T) in the (p t l )  period P 
P 291 P 292' 

P 

These samples of s(t) can then be written as a linear combination of 

%, 1 = alh2, 1 9 1 , l  

s2, 2 = alh2, 2 a2h1,2 

a2hZ, 2 ' a3hl, 2' s =  
392 
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Perform the following operations on these equations. 
(i) Multiply the equations in aacendiiig order 3f subscripts ef s. by the llcc)inci- 

1, j 
dent samples" of h(t) in descending order of subscripts. 

( i i j  Multiply alternate equations by - 1 
(iii) Add the equations. 

Carrying out these operations yields 

S 
2, 

- ~ ~ , ~ h ~ , ~  = - a  h h - a h h 1 2 , 2  2 , l  2 1,2 2 , l  

s h =  3 , l  2,1 

-s3, Z h l ,  1 = 

a2h2, lhl, 2 a3hl, lhl, 2 

- a 2 h ~ ,  zh l ,  1 - a3hl, Z h l ,  1 

s h -  2 , l  2 , 2  S 2 , Z h 2 , 1 t s 3 , 1 h l , 2 - s 3 , 2 h l , 1 = 0 ~  (3) 

Equation 3 is a homogeneous equation relating the samples of the IRT to the coincident 
samples of the kernel. Since the method by which Eq. 3 w a s  obtained does not depend 
upon which two consecutive periods the samples of s(t) a r e  chosen from, similar equa- 
tions hold for sample pairs from every two consecutive periods. That is, the samples 

and h of h(t) must satisfy the set of homogeneous equations h l ,  1' hl ,  2' h2, 1' 2,2 

- - - -  . -  - 
s l ,  l h 2 , 2  - S1,2h2, 1 -I- %, l % , 2  - S2,2hl, 1 = O 

%, l h Z ,  2 - %, Zh2, 1 -I- s3, A, 2 - s3, 2 1,1 h = O  

'3, lh2,  2 - '3, Z h l ,  1 '4, lh1,2 - '4,Zhl, 1 = 

Or, more compactly 

{sp, l h Z ,  z-sp, 2h2,1+Sptl, 1 h 1, 2-Spt1, Zhl, 1 = O b  

These equations show that the periodic sample pairs of s(t) a re  linearly dependent, 
and that their dependence is determined by the "coincident11 samples of the kernel h(t). 
Another way of looking at these equations is to note that a necessary condition for h(t) 
to be a kernel of s(t) is that the coincident samples of h(t) satisfy the homogeneous equa- 
tions written for the correct span. 

Equations 4 are a special case of a more general result, which shows that similar 
homogeneous equations of order 2D exists for IRT s(t) having kernels of span D. 

For  example, for  D = 1 
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e - - -  

h - S  h = O  sl, 1 1,2 1,2 1 , l  

lhl ,  2 - s2, 2 1 , l  

s3, lhl ,  2 - s3, Z h l ,  1 = O 

h = O  

for  D = 2 we have the equations just derived, for D = 3, 

- - - - -  
'1, lh3, 2 - '1, Zh3, 1 -I- ' 2 ,  lh2, 2 - ' 2 ,  Z h 2 ,  1 -I- '3, lhl ,  2 - '3, Zhl, 1 = 

'2, lh3, 2 - '2, Zh3, 1 '3, lh2, 2 - '3, zh2, 1 

'3, lh3, 2 - '3, Zh3, 1 -t '4, lh2,  2 - '4, Zh2,  1 

'4, lhl ,  2 - '4, Z h l ,  1 = 

'5, lhl, 2 - '5,2 h 1,1 = O  

and, in general, for an s(t) with a kernel h(t) of span D 

where p is the integer assigned to  the first of any D consecutive periods of s(t). 
general result is proved in section 2.2. 

the continuity of the presentation. 

This 
This proof may be omitted without breaking 

2.2 HOMOGENEOUS EQUATIONS FOR THE GENERAL CASE 

Equations of the form of Eqs. 4 hold for the general case of IRT s(t) of period T, with 

As in Fig. 6 ,  divide s(t) into numbered periods of length T. 
kernel h(t) of span D. The proof follows. 

th Starting with the p 
period, choose a set of periodic sample pairs from D consecutive periods of s(t). These 
samples of s(t) can be written as sums of the coincident samples of the waveforms 
{anh(t-(n-1)T)). Using the notation established in the previous section, we find that these 
equations are 

10 



Equations 1 is a special case of these equations. 
Multiplying the equation for the first sample of the (ptj)t" period by h D-j, 2,  and that 

fo r  the second sample by -hD,j, 1, 

h =! aptj-i h i, 1 h D-j, 2 ptj ,  1 D-j,2 
i= 1 

h h  aptj-i i , 2  D-j, h p t j ,  2 D-j, 1 1. i= 1 
1 

j = O  

Equations 2 is a special case of these equations. 

index j gives the equation 

5' 'ptj, lhD-j, 2 - 'ptj, 2 D-j, 1 
j=O 

Summing these equations on the 

D-1 D 

h = 1 aptj-i(hi, lhD-j, 2-  hi, ZhD-j, 1)' (7) 
j=O i= l  

The right side of this equation is shown to be zero as follows. First, consider the 
te rm for which i = m and j = n. As n takes on the values of j from 0 to  D - 1, note that 
D - n takes on each of the values from D to 1 once and only once, i. e . ,  all values 
in the range of i. 
on each of the values from D - 1 to  0 once and only once, that is, all values in the range 
of j. Hence, for the te rm for which i = m and j = n, there exists one and only one other 
te rm in the summation for which i = D - n and j = D - m. 

Similarly, as m takes on the values of i from 1 to  D, D - m takes 

This te rm is 

ap+c-m(hn-,, ?hm, 2 - hs-,, ,hm, 1 1 

which is the negative of the term for which i = m and j = n. Thus the te rms  of the sum- 
mation on the right side of Eq. 7 cancel in pairs, and the sum is zero. 

}D hi, 2 of h(t) satisfies the set of homogeneous 
i= 1 

Thus the set of sample pairs (hi, 1, 
equations 

rrl 'ptj, lhD-j, 2 - 'ptj, 2%-j, 1 ( 8 )  
j=O 

where p is the integer assigned to  the first of any D consecutive periods of s(t). Equa- 
tions 4 is a special case of these equations. 

By a further generalization of the above derivation using methods similar t o  that dis- 
cussed at the end of the previous section, it is possible to select any even number k 
of samples per period and write corresponding homogeneous equations of order Dk. It 
is sufficient for the purposes of this investigation to consider only two samples per 
period, because of the difficulties inherent in solving simultaneous linear equations in 
many unknowns. 

11 



111. PROPERTIES OF THE SOLUTIONS TO THE HOMOGENEOUS EQUATIONS 

It has been shown that any set  of periodic sample pairs of an IRT a r e  alternately 
signed coefficients of a set  of linear homogeneous equations, with coincident samples of 

the kernel as solutions (Eqs. 8). Thus, for any set  of periodic sample pairs of an 
arbitrary waveform s (t), a necessary condition for a set  of numbers {h. .} to be the 
coincident samples of a kernel of span D is that these numbers solve the appropriate 
homogeneous equations of order 2D. This result suggests that we should attempt to find 
samples of the unknown minimum kernel of an IRT by selecting many sets  of 

periodic sample pairs of the LRT, and solving the appropriate sets of homogeneous 
equations to find the coincident samples of the kernel. This approach is, in principle, 
the one that w i l l  be used. There a re  problems, however, which prevent its direct 
application. 

1J 

(i) Solving the homogeneous equations is not a sufficient condition for a set of num- 
bers  to be the coincident samples of a kernel. Just  because a set  of numbers w i l l  solve 
the homogeneous equations does not guarantee them to be coincident samples of a kernel. 
For example, the trivial (zero) solution solves every set  of homogeneous equations, but 
is certainly not the solution we seek. Our first objective, then, wi l l  be to find a sufficient 
condition for  a solution to the homogeneous equations to be the coincident samples of a 

kernel. 
(ii) For the cases of interest, the solution w i l l  never be unique. This follows from 

the fact that whenever the homogeneous equations have a unique solution, it is always 
the trivial solution, which is of no interest. Otherwise, the equations have a P- 
parameter infinity of solutions, and we a re  faced with the problem of selecting one from 
this infinity of solutions. 
focus our attention on one particular nontrivial solution, the 1 -parameter solution. 
w i l l  be shown that for IRT of finite duration the coincident samples of the minimum 
kernel a r e  always found as  1-parameter solutions to the set of homogeneous equations 
written for the proper span. 

(iii) The span D for which the homogeneous equations a r e  to be written is not 
Since we a re  going to consider IRT of finite duration, we can assume that the 

Rather than trying to resolve this problem in detail, we shall 

It 

known. 
kernel is of finite duration, but we have no knowledge of just how long a time it lasts. 
In connection with our study of 1-parameter solutions, we shall discover a method of 
finding the span of the minimum kernel which is always applicable when the begin- 
ning and ending of the IRT a re  known. 

ties of the solutions to the homogeneous equations for just - se t  of periodic sample 
pairs, that is ,  w e  shall t ry  to find just two samples of the kernel per period. 
shall use our results to determine as  many samples of the kernel as we desire. 
present, we shall consider methods of solving the problems posed above for just one 
set  of periodic sample pairs. 

We shall confine ourselves here and in Section IV to an investigation of the proper- 

Later we 
For  the 
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3.1  ACCEPTABLE AND UNACCEPTABLE SOLUTIONS 

Suppose that a set  of periodic sample pairs is selected from some IRT s(t), and the 
corresponding homogeneous equations a re  solved. 
there w i l l  always be a solution. The solution may be the trivial one, a 1-parameter 
solution, a 2-parameter solution, and so on. 
of the P-parameter infinity of solutions can be coincident samples of a kernel of s( t ) .  

In any case, it  is clear that the solutions can always be divided into two mutually 
exclusive categories. 

(i) Those solutions that are coincident samples of a waveform that can be a kernel 
of s (t) . Call these acceptable solutions. 

(ii) Those solutions that a r e  not coincident samples of a waveform that can be a 

Since the equations a re  homogeneous, 

The problem is to determine whether any 

kernel of s (t). 
The definitions of acceptable and unacceptable solutions need some amplification if  

they a re  to be used to test any particular solution {h..} to a set  of homogeneous equa- 
tions. Specifically, a solution is acceptable if  the following equations, hereafter called 
the generating equations of s(t), 

Call these unacceptable solutions. 

1J 

h p p ,  1 = ap-D+l D, 1 ap-D+2hD, 1 + ' * *  
a 

I sp ,  2 = ap-Dtl h D, 2 ' ap-Dt2 h D, 2 + . . . + a  
(9 )  

can be solved for the impulse areas {ai}. Equations 1 give an example of these equa- 
tions. This criterion obviously guarantees the {h. .} to be an acceptable solution by 
actually showing how the periodic sample pairs of s(t) can be reconstructed. 
generating equations cannot be solved for the {a;}, then the solution {h::) is unaccept- 
able. 

1J 
If the 

'J 

As examples of acceptable and unacceptable solutions, consider an s ( t )  which is 
an IRT whose kernel has span D. 
guaranteed, namely, the coincident samples of the kernel. 
one unacceptable solution is also guaranteed, the trivial (zero) solution. 
to note that for any waveform of finite duration, there is some span for which the homo- 
geneous equations have an acceptable solution. This result is more obvious than might 
be supposed, since it follows readily from the observation that any waveform of finite 
duration can be considered to be an IRT merely by letting the waveform itself be the 
impulse response (kernel), and using one impulse. Then the homogeneous equation 
written for a span which includes the whole waveform w i l l  have solutions that a r e  the 
same periodic pairs used a s  the coefficients of the equation. 

The existence of at least one acceptable solution is 

The existence of at least 
It is of interest 

- 

- 

Since this result is necessary later,  we shall formalize it in a theorem. 
THEOREM 1. Let {sl, l ,  s l ,  2 , .  . . , sN, l ,  sN, } be any set  of N consecutive peri- 

odic sample pairs f rom any waveform s(t) for some period T. 
one span for  which the homogeneous equations have an acceptable solution. 

Then there is at least 

1 3  



Proof: The homogeneous equation for span N is 

C S  h - S  h = 0. 
n, 1 Ntl-n,2 n, 2 N+1-n, 1 

n= 1 

This equation has the acceptable solution 

hj, k = sj, k; 

that is ,  the samples of the IRT itself. 
tion cancel in pairs, giving zero. 
samples with impulse areas  a l  = 1 and an = 0, 1 C n S N. 

tion written for span N always has an acceptable solution. // (// denotes the end of a 
proof, / part of a proof.) 

This is a solution because the te rms  of the equa- 
It is acceptable because it can generate the original 

Thus the homogeneous equa- 

3 . 2  A SUFFICIENT CONDITION FOR AN ACCEPTABLE SOLUTION 

Before proceeding with the theorem, which gives a sufficient condition for a solution 
to be acceptable, i t  is convenient to introduce some matrix notation. 
arbitrary waveform of N periods numbered from 1 to N,  increasing in the direction of 
increasing time. 
order 2D are 

Let s(t) be an 

For any set  of periodic sample pairs, the homogeneous equations of 

s l ,  lhD,2 - ~ ~ , ~ h ~ , ~  t ........ t s h - s h = o  D , l  1 ,2  D,2 1, 1 

s 2, 1 h D, 2 - ~ ~ , ~ h ~ ,  t . . . . .. . . “Dt1,l  h 1 ,2  - S  Dt2,2 h 1, 1 = O  

- 
‘N-Dtl, lhD, 2 - ‘N-Dtl, ZhD, 1 * ‘N, l h l ,  2 ‘N, Zhl, 1 

This set of equations wi l l  be given the matrix notation 

L - I  

where 

[SND] = 

. . . .  

. . . .  

. . . .  
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HD]* 

and 01 is the column zero matrix having the appropriate number of entries. Note that 
N and D do not refer to the number of rows and columns in any of the matrices, but 
the number of rows and columns can be computed from these numbers. 

If s(t) is an IRT having a 
kernel h(t) of span D, the periodic sample pairs of s(t) can be written in terms of the 
coincident periodic sample pairs of h(t) by the following generating equations: 

It is convenient to establish the following notation also. 

hD, 1 
: 

S 1 ,1  - - a-Dt2hD, 1 

S 1 ,2  - - a-Dt2hD, 2 

a-Dt3 h D-1, 1 

a-Dt3 h D-l,2 

t . . . t a lh l ,  

t . . . t s lh1 ,2  

S N,  1 = aN-DtlhD, 1 

S N, 2 - aN-DtlhD, 2 

aN-D+2hD-l, 1 t . . . t aNhl, 

aN-Dt2hD-l, 2 ' ' - 
'Nhl, 2' 

This set  of generating equations can be written in matrix notation. 

sN1 = [HEJ 4 
where 

[HE] = 

- - 
0 0 0 . .  

0 0 0 . "  

h l ,  
0 . . hD,l hD-l, l  ' ' 

hD,2 hD-1,2 * . ' h1,20 0 . . 

hD,lhD-l, l  * ' * ' hl ,  1 

hD,2hD-1,2 . * hl,  2 

% , l o  - - 
h1,20 * * 

. . . . .  hD, 1 

hD, 2 

0 0  

0 0  . . . . .  

etc. 
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and 

=f+] 
aN 

Finally, it is convenient to write a notation for  the 2(D-l)th-order determinant of the ma- 

trix [,:-']. Denote this determinant by I HD I . For example, for D = 3 this determinant is 

P31 = 

h3, 1 h2, 1 h l ,  1 0 

h3,2 h 2 , 2  h1,2 0 

0 h3,1 h2,1 h l , l  

0 h3,2 h 2 , 2  h1,2 

It w i l l  now be shown that a sufficient condition for an acceptable solution to the homo- 

THEOREM 2. Let (s l ,  1, s l ,  2 ,  . . . , sN,  
geneous equations is that I H ~ I  + 0. 

sN, } be any set  of N consecutive sample 
pairs, from a waveform s(t) for some period T .  Let (hD, 2 ,  hD, l , .  . . , h l ,  2,  h l ,  1} be 

ISN] HD] = 01 such that lHDl # 0. a solution to the set  of homogeneous equations 

Then there exists a unique solution to the generating equations S 1 = [H:] A:]. 

cedure to be used in the general proof. 

N 
L D  

Proof: The theorem w i l l  first be proved for D = 3 and N = 5 to illustrate the pro- 

The equations for which a unique solution allegedly exists a r e  S 3 = [H:] $1 o r  

' *  

2. 

'1, 1 = a-lh3, 1 + aoh2, 1 ' a lh l ,  1 

'1,2 = a-lh3, 2 + aoh2, 2 + a lh l ,  2 

3. s 291 = a0h3, 1 a1h2, 1 ' a2h1, 1 

aoh3,2 ' a l h 2 , 2  + a 4. s = 

5. s = 

6. s 3.2 = 
7 .  s = 

8. s = 

9. s 5 , 1  = a3h3, 1 a4h2, 1 + a5hl, 1 

10. s5,2 = a3h3, 2 a4h2, 2 ' a5hl, 2 

2 . 2  2 1 ,2  

3.1 alh3, 1 + a2h2, 1 + a3hl, 1 

alh3, 2 + a2h2, 2 + a3hl, 2 

a2h3, 1 + a3h2, 1 ' a4hl, 1 

a2h3, 2 ' a3h2, 2 ' a4hl, 2 

4,1 

4 , 2  
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Now, one of h l ,  1, h l ,  

zero, hence / H  1 = 0. But this is not so  by assumption. Assume that h 

Then the given equations [ $1 H3] = 03, written out, 

is not zero. For.. i f  both a r e  zero, the last column of I H3 I is 

is not zero. 
3 1 ,1  

'1, lh3, 2 - '1, Zh3, 1 ' '2, lh2, 2 - '2, Zh2, 1 "3, l h l ,  2 - '3,2 h 1 ,1  = O  

'2, l h j ,  2 - '2, Zh3, 1 "3, lh2, 2 - '3, ZhZ,  1 ' '4, lh1,2 - '4,Zhl, 1 = 
'3, lh3, 2 - '3, Zh3, 1 ' '4, lhZ, 2 - '4, Zh2, 1 -t '5, l h l ,  2 - S5,2hl,  1 = 0, 

imply that the loth, gth, and 6th equations of S5] = [H:] A:] a re  linearly dependent 

upon the five equations that immediately precede them. 
tiplied by h3, 2,  

zero, by the third homogeneous equation above. 

For, let equations 5-10 be mul- 
-h respectively. The left-hand side is -h 3 , l '  h2,2' -h2, 1' h1,2' 1, 1' 

The right-hand side is zero for reasons 
discussed in section 2. 3 in connection with the derivation of the homogeneous equations. 
Thus the loth equation is linearly dependent upon the previous five equations. Equa- 
tions 8 and 6 are similarly dependent upon the five equations that precede them. Thus, 
the equations remaining to be solved a re  

'1,l = a-lh3, 1 ' aoh2, 1 ' a lh l ,  1 

' l ,2  = a-lh3, 2 ' aoh2, 2 ' a lh l ,  2 

3. s 2 ,1  = 

4. s 2 , 2  = 

a0h3, 1 ' a lh2 ,  1 ' a2hl, 1 

a0h3, 2 ' a1h2, 2 ' a2hl, 2 

5. s 3.1 = alh3, 1 ' a2h2, 1 ' a3hl, 1 
a h  + a h  + a h  7 - 

" "4,1 - 2 3 , l  3 2 , l  4 1 , l  

9. s 591 = a3h3, 1 a4h2, 1 ' a5hl, 1 

3 The determinant of the coefficient matrix for this set  of equations is (hl , 1) I H3 I, which 
cannot be zero, by assumption. Since there a r e  seven equations in seven unknowns, 
and the coefficient matrix has a nonzero determinant, the solution exists and is unique. 

If h l ,  cannot be zero. Equations 5, 7, and 9 can then be shown to 
be dependent on the others, and a similar proof carried out to show that a unique solu- 
tion exists. / 

The general proof follows along the same lines. The equations for which a unique 

solution allegedly exists are SN] = [HE] A:]. Now, one of hl , 1, h l ,  is not zero. 

For, i f  both a r e  zero, the last column of lHDl is zero, hence lHDl = 0. 

tradicts an assumption of the theorem. 

= 0, then h 1 ,2  

But this con- 

is not zero. Then the N-Dt1 homogeneous equations [ S "61 HD1 = Assume that h 1 ,1  
01 imply that the ZNth, Z(N-1) th , . . . , 2(N-Dtl)th equations of $1 = [H:] A:] a r e  
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linearly dependent upon the (2D-1) equations immediately preceding them. There- 
fore, these equations may be removed from consideration, since they a r e  implied 
by the others. 
that is ,  the first 2(D-1) of the original equations remain, along with the first of 
each of the remaining pairs of equations. 

tions in N t D - 1 unknowns have a solution, and it is unique. This solution also 
satisfies the remaining equations, since they were linearly dependent upon the equations 
having this solution. 

= 0,  then h 
N - D t 1 pairs can be eliminated, and the proof proceeds as before, with the deter- 
minant of the coefficient matrix being (h 

This leaves 2N - (N-Dtl) = N t D - 1 equations in N t D - 1 unknowns, 

The determinant of the coefficient matrix 
Hence, the N + D - 1 equa- l H D l ,  which cannot be zero, by assumption. )N-Dtl  is (hl ,  1 

If h l ,  cannot be zero. Then the first equation of each of the last 
1,2 

IHDI’ // )N-Dtl 
1 ,2  

3 . 3  1-PARAMETER ACCEPTABLE SOLUTIONS 

A s  we have previously,noted, one question that a r i ses  in the solution of linear equa- 
tions is that of the uniqueness of the solution. It may be that the solution is unique, o r  
there may be a 1-parameter, 2-parameter, etc. infinity of solutions. These possibil- 
ities present special problems in our case,  for which the equations a r e  homogeneous, 
and therefore the only unique solution is the trivial one, which is useless as the samples 
of a kernel. 
tions in any case of interest. 

Therefore, we must always expect to be presented with an infinity of solu- 

Of the possible solutions of interest, the simplest that we can expect are the 1- 
Not only a re  these the simplest, but they are easiest to inter- parameter solutions. 

pret. The meaning of a 1-parameter solution is that every possible solution is just a 
constant times any other possible solution; that is ,  all of the solutions a re  scaled 
versions of each other. 
all must be (except, of course, the zero solution). This follows readily by noting that 
i f  (ai} are solutions to the generating equations (Eqs. 9) for some {h..}, then {+ai> 
a r e  solutions for (kh..}. 

Thus if  any one of the 1-parameter solutions is acceptable, they 

1.l 
The IRT The interpretation of this is quite simple. 

1.l 

N2 
s(t) = anh(t-(n-l)T) 

1 n= N 

could just as easily be generated with the kernel scaled by k and the {an) scaled by 
l/k. That is, 
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Thus, whenever the homogeneous equations have a 1 -parameter infinity of solutions, and 
one of these solutions is acceptable, they must all  be acceptable (with the single noted 
exception of the zero solution). 
a x e  solution. 

1-parameter solution, then one of the unknowns can be assigned a value before solving 
the equations, for example, h l ,  
constrained to be zero by the equations (see Sec. VI).] The resulting equations wi l l  no 
longer be homogeneous, and will  have a unique solution for the remaining unknowns. 
Thus the unknown to which the value was assigned becomes a norm for all the rest  of 
the unknowns, scaling the whole solution to its assigned value. 
cially desirable since there is no doubt about which of the infinity of solutions is to be 
selected - one is a s  good as  the other, since they a re  just scaled versions of each other. 

Besides the properties already noted, 1 -parameter solutions to the homogeneous 

So it is permissible to speak of a 1-parameter accept- 

If it is somehow known in advance that a set of homogeneous equations w i l l  have a 

= 1. [It is assumed the value of the unknown is not 

This situation is espe- 

equations (acceptable or  not) have another interesting and useful property. This property 
follows from a theorem that we shall prove (Theorem 3) ,  which asser ts  that if the homo- 
geneous equations for some span D have a 1-parameter solution, then 

- 

(i) the homogeneous equations for spans > D have a > 1 -parameter solution, 
(ii) the homogeneous equations for spans < D  have only the trivial solution. 

What this means is that i f  for some span the homogeneous equations have a 1-parameter 
solution, then it is the only span for which they have a 1-parameter solution. 
more, it is the minimum span for which a nontrivial solution exists. Therefore, -- if  a 
1-parameter acceptable solution is known to exist for some span, it must be the accept- 
- able solution - of minimum span. 
arid eiidifig ai-e h o w ;  there is a?.,.:aj.s g~aranteed tc? he E 1-parameter acceptable solution 
for  some span -and we a re  now guaranteed by Theorem 3 that it is the acceptable solu- 
tion of minimum span. 

THEOREM 3.  If a set  of homogeneous equations has a 1-parameter solution, 

(i) the homogeneous equations for spans > D  have a > 1-parameter solution, (ii) the 
homogeneous equations for spans < D  have only the trivial solution. 

Proof: (i) Suppose that the coefficient matrix of the homogeneous equations for span 

Further- - 

------- ---- 
We shall prove that for waveforms whose beginning 

D has rank 2D - 1, that is ,  rank SD 

span D t 1, the first 2D columns a re  columns of without the last  row, and the last 

2D columns a re  the columns of SD without the first row. Therefore, the first and last 

columns of SDtl a r e  dependent upon the center 2D columns. Therefore rank SDtl 

2D, and the homogeneous equations have a 2-parameter or  greater solution. / 
(ii) Now suppose that rank [ S E I  = 2D - 1, that is ,  the homogeneous equations [SEI HD1 = 01, have a 1-parameter solution. If there is a se t  of homogeneous equations 

= 2D - 1. Then in the coefficient matrix for 

[ "I [ "I 
[ "I SD 

[ "  1. [ "  I 
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for the same sample pairs with lesser  span which has a P-parameter solution, P 3 1, 
then, by the previous result, the equations for  span D cannot have a 1-parameter solu- 

tion. Since this contradicts the assumption that rank SD = 2D - 1, no homogeneous 

equations for span c D  can have nontrivial solutions. Therefore, if  a set  of homoge- 
neous equations for some span D have a 1-parameter solution, then it is the nontrivial 
solution of minimum span. // 

[ "1 

3.4 SOLUTIONS FOR WAVEFORMS WHOSE BEGINNING 
AND ENDING ARE KNOWN 

We now demonstrate that for waveforms whose beginning and ending a r e  known, that 
i s ,  waveforms of finite duration, there always exists a 1 -parameter acceptable solution 
to the homogeneous equations written for some span. 

The phrase, "whose beginning and ending a r e  known," requires better definition. Let 
s(t) be a waveform known on a finite interval divided into N periods, and let s(t) be 
zero for D - 1 periods at the beginning and ending of the interval. Then s(t) is called 
a complete waveform. Note that completeness depends upon the value of D (see Fig. 9). 
Thus we shall refer to D-complete waveforms. H,an LRT s( t )  with kernel h(t) of span D 

I I I I I I  

I I I I I I I I I I  . .  

1 

Fig. 9. Complete waveforms: (a) for D = 3; 
(b) for D = 1. 

is D-complete, it is clear that no impulse response starting outside the beginning of 
the interval can make a nonzero contribution to s( t ) ,  hence the "beginning" of s(t) is 
known. Similarly, the condition also implies that the last impulse response occurring 
within the interval cannot make any nonzero contribution outside the interval, hence the 
"ending" of s(t) is known. 

from 1 to N, the homogeneous equations take on a particular form. In the matrix SD , 

the first row has zeros in its first 2(D-1) entries, and both of the remaining two entries 
cannot be zero; the second row has zeros in its first 2(D-2) entries, and not all of the 

When a waveform is complete, and the periods a r e  numbered 

L "1 

2 0  



remaining entries can be zero; etc. A t  the bottom of the matrix, the last row has zeros 
in its iast 2(D-1) entries, and not all of the remaining entries can be zero; the second 
from the last  row has zeros in its last 2(D-1) entries, and not all of the remaining 
entries can be zero; etc. 

For  example, if  w e  assume that the period sample pairs for N = 9 and D = 3 a r e  

[s39] = 

s = o  
s l , l  = O 1,2 

1 - 2  3 - 3  1 3  
3 -3 1 3 -1 -3 

1 3 - 1 - 3  0 1 
- 1 - 3  0 1 0  0 

s = 2  
S3, l  = 392 

s = 3  492 s = 3  491 

s = -3 5,2 s = 1  5,1 

'6,2 = s = -1 6,1 

s = -1 7,2 s = o  791 

'8,2 = s = o  8, 1 

s = o  
991 

s = o  
992 

then the coefficient matrix S of the corresponding [ 391 homogeneous equations is 

L o  1 0 0 0 o] 

Now, since for a D-complete IRT the "beginning" and IIend" of the IRT a re  known, 

it might be expected for a kernel of span D that the impulse areas  before the Dth period 
and after the (N-2D+2)th period would be zero. 
be expected to be nonzero outside the interval between its assumed "beginning" and 

If this were not true, the IRT would 

ending. It 
The following is a corollary of Theorem 2 to show that these impulse areas  a r e  

COROLLARY OF THEOREM 2.  Let {sl, 1 , s 1 , 2 , .  . . ,sN, 1, s ~ , ~ }  be any set  
zero for solutions satisfying the condition IH,I # 0. 

of N consecutive sample pairs from a complete waveform s(t). Let 
{hD,2,hD, l , .  . . , h1 ,2 ,h l ,  1} be a solution set of the homogeneous equations 
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ating 

HD] 03 such that I HD I # 0. Then there exists a unique solution for the gener- 

equations SN] = ["D] A:] such that ai = 0, -D t 2 S i < D and N - 2D t 2 < i < N. 

Proof: There exists a unique solution for the generating equations, by Theorem 2.  / 
The assertion that ai = 0, -D t 2 < i C D, and N - 2D t 2 < i S N can be proved a s  

follows. Consider the 2(D-1) generating equations for the first D - 1 periods. Since 

s(t) is complete, these equations a re  homogeneous and the determinant of their coef- 
ficient matrix is lHDl, which is nonzero by assumption. Hence the solutions a r e  zero 
only. 

Now, consider the 2(D-1) generating equations for the last  2(D-1) periods. Again 
they a r e  homogeneous and the determinant of their coefficient matrix is I HD I # 0. Hence 
the solutions a re  zero only. 

The theorem that wi l l  be proved next w i l l  show that for a complete waveform the 

Therefore ai = 0, -D t 2 < i < D. 

Therefore ai = 0, N - 2D t 2 < i S N. // 

acceptable solution of minimum span is 1-parameter and gives unique impulse areas.  

THEOREM 4. Let the homogeneous equations [Sg] HD] = 01, D 3 2 ,  for the peri- 

odic sample pairs of a complete waveform, periods numbered 1 to N, have rank <2D. 

Then (i) If the rank of the equations is < 2D - 1, the homogeneous equations for some 
span < D  have a 1-parameter solution. (ii) If the rank of the equations is 2D - 1 (that 
is, they have a 1 -parameter solution), their solution is acceptable. Furthermore, the 
impulse areas corresponding to this solution (for a fixed norm) a re  unique with ai = 0, 

-D + 2 S i < D and N - 2D t 2 < i S N. 
Proof: The proof w i l l  be by induction, that i s ,  the theorem wi l l  be proved for D =  2 

Assume D = 2. Let (hl, , hl ,  2,  h2, 1, h2, 2} be one of the nontrivial solutions to 
and then shown to hold for any D i f  it holds for D - 1. 

the homogeneous equations [ S y ]  H2] = 03. These equations a re  

"2,lh1,2 - S2,2hl, 1 = o  

h = o  s2, P 2 , 2  - 2h2, 1 + '3, l h l ,  2 - '3 ,2  1 , l  

'N-2,l h 2,2 - S  N-2, 2h2, 1 ' 'N-1, l h l ,  2 - 'N-I, 2 h 1 , l  = O  

= o  'N-1, lh2, 2 - 'N-I, 2 h 2 ,1  

(i) Suppose that the general solution to the homogeneous equations is more than 1- 

parameter, that is ,  rank < 3.  It w i l l  now be shown that rank < 2. For,  sup- 

pose that rank = 2. Since the columns of a re  the first two columns of 

the first two columns of a re  linearly independent. Then if  8 # 0, columns 1, 2, 2, 1 
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and 3 of r S y 1  must be linearly independent, since there a re  only zeros in the first row 
L L A  

of columns 1 and 2 .  Hence rank [ S y ]  = 3, which is a contradiction. Therefore rank 

rsf'1 < 2. 
L ' _ I  

independent, and the same result follows. 
If s = 0, then s # 0, by assumption. Then columns 1, 2,  and 4 of 2 ,1  2 9 2  

But rank [S:] # 0, since it is assumed that the entries of S a re  not all zero. [ :I 
Therefore rank S = 1, and the equations [Sfl] H1] = 01 have a 1-parameter solution. / [ :I 

(ii) If the general solution to the homogeneous equations is 1-parameter, then it can 
be shown that lH2 1 # 0. 

For,  suppose that IH2 I = 0. Then 

h2, 1 h l ,  1 

h2,2 h l ,  2 

= 0. 

It is convenient to interpret this a s  meaning that the two columns a re  

other column F:; :] , where neither of gl ,  1, gl ,  a r e  zero. Thus 

multiples of some 

h l ,  1 = bl%,  1 h2 , l  = b282,l 

h l ,  2 = blg l ,  2 h2,2 = b2g2,z 

Substituting these values in the homogeneous equations (Eqs. 14) gives 

b+s2,1g1, F S 2 ,  2g1,1) = o  

b2(S2, A ,  2-s2, 281,l 1 + bl(s3, lg l ,  2-'3, 2g1, 1) = o  

b2(SN-2, lg1,2-SN-2,2g1, 1) +bl(SN-l,lg1,2-SN-1,2g1,2) = 

b2(SN-l,  l g l ,  2-'N-1, 2 g l ,  1) = 0. 

Since both of bl and b2 cannot be zero (otherwise the h. would be zero, but it has 
1. j 

been assumed that the solution is nontrivial), these equations reduce to the homogeneous 
equations 

= o  

= o  
s2, A, 2 -s2, 281,l 

S 3, l g l ,  2 -'3, Z g l ,  1 

= 0. 'N-1, lg l ,  2 -'N-l, 2g1, 1 
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Therefore, in the matrix S columns 1 and 2 a r e  dependent, and columns 3 and 4 

a r e  dependent. Therefore the maximum number of independent columns is 2 and of rank 
[ :I 

[SF] c 3 ,  which contradicts the assumption that rank S = 3 .  Therefore IH2 I # 0. [ :I 
Then, by the corollary of Theorem 2 there exists a unique solution for the generating 

equations [ S F ]  = [€IF] A:] such that ai = 0, -D t 2 6 i < D and N - 2D t 2 < i G N. / 
Now the theorem wi l l  be proved for any span D, under the assumption that it holds 

for all spans from 2 to D - 1. 

(i) Assume that the general solution to the homogeneous equations is more than 1- 

parameter. Then rank SD < 2D - 1. It can now be shown that the first (or the last)  

2(D-1) columns of SD , which a r e  the coefficients of the homogeneous equations for 

a span of D - 1, cannot have rank 2(D-1). 

[ "1 
I "I 

For,  suppose that the rank of the first  2(D-l) columns is 2(D-1). Then, i f  s # 0, DS1 
columns 1 through 2D - 1 must be linearly independent, since columns 2D - 1 has a non- 

in a row where the first  2(D-1) columns have zero entries. If s ~ , ~  = 0, zero entry, s 
then s 
and the last column a re  linearly independent. 

[S:] = 2D - 1, which is false by assumption. Therefore, the homogeneous equations 

for span D - 1 a r e  of rank <2(D-1). 

solution. Otherwise, since the theorem applies for every span less than D, application 

at each successive level eventually implies rank S = 0, which is impossible because 

the entries of S a r e  not all zero. / 

D, 1' 
# 0 by assumption, and hence, by the same argument, the first  2(D-1) columns D, 2 

But, in either case, this means that rank 

Now, the homogeneous equations for some span less  than D must have a 1-parameter 

[ f"1 
[SEI H,,] = 0] have a 1-parameter solu- (ii) Assume that the homogeneous equations 

For,  suppose that lHDl = 0. Then consider the corresponding matrix [HD- 1. By 

performing the three following operations on this matrix, it can be converted to a matrix 
of coefficients of a set of homogeneous equations of order 2(D-1) for periodic sample 
pairs of a complete waveform for span D - 1. 

[ :I 
tion. Then the determinant lHD I f 0. 

D 1  

(a) Take the transpose. 
(b) Rotate the matrix about a horizontal center line, that i s ,  interchange row m and 

row 2(D-1) -m; 1 6 m G D - 1. 
(c) Multiply the even numbered columns by -1. 

Since these operations can do no more than change the sign of the determinant, the 
determinant is still zero. Hence the corresponding homogeneous equations have a non- 
trivial solution. Now, since the theorem is true for all spans up to D - 1, there exists 
some span  X < D  for which the homogeneous equations for the periodic sample pairs that 
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a r e  the entries of HD] have 1-parameter acceptable solution with unique impulse areas. 
Thus the elemmts ef the matrix ED] can be written as  samples of a complete IRT with 
kernel g(t) of span X < D. 

matrix GX] and the impulse areas {bi}D-Xtl a s  follows. 

The matrix HD] can therefore be expanded in terms of the 

i= 1 

hD, 2- 

hD, 1 

= bl + b  

0 

- 

GX 
- 

0 

0 

0 
- .  

Substituting this expansion in the homogeneous equations [SE1  GX] = 03 gives 

bD-Xtl ' bD-X 
= 03 

Now it can be shown that this expression implies that [S:] Gx] = 03. 

Assume that bl # 0 .  Then consider the first entry of the last matrix, which is the 

first entry of % 
other terms is zero. 
second entry of the second from the last matrix is zero. 
second from the last matrix is the same as the first  entry of the last matrix, which has 

just been shown to be zero. 
process can be continued until all of the entries of the last  matrix a re  shown to be 

GX]. Clearly, it must be zero, since the first entry in all  of the [ "1 
Consider the second entry of the last matrix. This entry plus the 

But the second entry of the 

Hence the second entry of the last  matrix is zero. This 

zero. Hence [e] GX] = 01. 

If bl = 0, the same process can be applied to the first term on the right for which 
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bi # 0, with the same result. 

Since I GX I # 0, the equation [Sg] GX] = 01 implies that the columns of [s:] a r e  

linearly dependent. This implies that in the matrix [S:], the first column is dependent 

upon the 2X - 1 columns which follow it,  and the last column is dependent upon the 

2X - 1 columns which precede it. Hence the rank of SD cannot exceed 2(D-1). But 

this is a contradiction since it w a s  assumed that rank = 2D - 1. Hence lHDl # 0. 

[ "1 
[ "1 SD 

Then, by the corollary of Theorem 2 there exists a unique solution for the gener- 

ating equations SD "1 = [.E] A;] such that ai = 0, -D t 2 S i c D and N - 2D t 2 c i S N. // 
This theorem shows that for a complete waveform there is always a 1-parameter 

acceptable solution. For, by Theorem 1 there is always an acceptable solution, and by 
this theorem either that acceptable solution is 1-parameter, o r  there is a 1-parameter 
solution for some lesser span'. 
tion is the acceptable solution of minimum span. 

Furthermore, by Theorem 3, this 1-parameter solu- 

3 .5  AN APPROACH TO FINDING THE SPAN OF THE 
MINIMUM KERNEL 

The results that w e  have achieved thus far suggest a way of finding the span of the 
minimum kernel for IRT of finite duration. Suppose that the homogeneous equations 
a re  set  up and solved for spans D = 1,2,3,  . . . , etc. Then, by Theorem 3, a s  long a s  
the span is w t h a n  the span for which there is a 1-parameter solution, the equations 
w i l l  have only the trivial solution. As the span is increased, however, there must 
eventually be a nontrivial solution, by Theorem 1, and this must be the 1-parameter 
solution, and by Theorem 4 it must be acceptable. 
the span for which the first nontrivial solution occurs. 
a variation of this approach which is closer to the method that we  shall actually use 
because it has advantages for machine computation. 

key points in proving the theorem was showing that any solution to the homogeneous 
equations written for a span greater than the minimum could always be represented a s  
the samples of an IRT with kernel of shorter span. This process continued until it w a s  
ultimately shown that the acceptable solution of minimum span consists in samples of a 
kernel that can generate any solution for a higher span. This means that the minimum 
kernel wi l l  always be able to generate any kernel of larger span as an IRT. 

Since we are  going to look for a 1-parameter acceptable solution, w e  might a s  w e l l  

choose one of the unknowns a s  the norm (we shall choose h ) and constrain it to have 
a nonzero value. Now w e  set up and solve the homogeneous equations for span 
D = 1,2,3, .  . . , etc. Since the equations for  spans less than the span for which there is 
a 1-parameter solution can have only the trivial solution, the assigning of a nonzero 

The approach, then, is to look for 
But w e  should like to propose 

It is possible to make another interesting observation from Theorem 4. One of the 

1 ,1  
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value to h w i l l  cause these equations to have solution for this constraint. On the 
other hand, when t i e  span for which there is a I-parameter soiution is reached, the 
equations wi l l  be solved and give a unique solution. - Thus, --_- when one of the unknowns 
constrained to be nonzero, the lowest span for which a solution exists is also the lowest 
span for  which an acceptable solution exists. 

1 , 1  

----- - -  ------ 
e_--- 

It is tempting to say at this point that the lowest span for which the 1-parameter 
acceptable solution exists is the span of the minimum kernel. 
not justified in saying this because it may be that this span is lower than the span of the 
minimum kernel. Suppose, for example, that the homogeneous equations were written 
for an LRT whose minimum kernel had span 2. 

cident samples of the second period of the kernel happened both to be zero for the 
chosen set  of periodic sample pairs of the IRT. Then it is clear that the homogeneous 
equations written for span 1 would have a solution, namely, the coincident samples in 
the first period of the kernel. Thus, it  is not possible to determine the span of the 
minimum kernel by solving just this set  of homogeneous equations. For  span 2, however, , 

the homogeneous equations written for the vast majority of periodic sample pairs w i l l  
have 1-parameter solutions, so the span of the minimum kernel can be found by solving 
many sets  of homogeneous equations written for different choices of periodic sample 
pairs. 

Unfortunately, we a r e  

Furthermore, suppose that the coin- 
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IV. SOLVING THE HOMOGENEOUS EQUATIONS IN THE PRESENCE OF NOISE 

Since it is our ultimate goal to apply the theory of IRT to physically generated sig- 
nals, we must be prepared to deal with perturbations of these physical signals from the 
IRT idealization. These perturbations could result from any number of unknown factors, 
such as additive noise, variations in the pulse spacing, or time variations in the impulse 
response. 
homogeneous equations to have only the trivial solution (except for the uninteresting 
case in which we let the impulse response be the signal itself), which is of no use to us. 

The net effect of these perturbations from the ideal will  be to cause the 

To avoid this, we shall take the point of view that the signal that we a re  attempting 
to analyze really is an IRT, but it has been altered "slightly," because of various dis- 
turbances, which will be represented by additive noise. Then we should like to form 
an estimate of the kernel of this underlying IRT. One approach to securing this esti- 
mate is to note that i f  the departure from the ideal is "small," the homogeneous equa- 
tions written for the span of the kernel of the underlying IRT should "almost" have a 
solution, that is, there is some set of numbers {h..} that make the left-hand side of the 
equations "nearly" zero. We propose, then, a s  a reasonable approach, not to t ry  to 
solve the homogeneous equations outright, but rather to find that set  of numbers which 
comes "closest" to solving the equations, in the sense that it minimizes the mean- 
square value of the left-hand side of the equations. 
finding the {h..} that minimizes the mean square of the set of residuals r 

13 

For example, for D = 2 this means 
where 

11 P' 

{sp. lh2, 2 - sp, lh2, 1 sp t l ,  1 h 1 , 2  - S  p t l ,  2 h 1 ,1  = r } .  p 

This leads to difficulties immediately because the obvious solution is to make all of 
the h.. = 0, in which case {r =O}! In order to avoid this undesirable result, let us sup- 
pose that the underlying IRT, if it were not perturbed from the ideal, is of the type that 
has a 1-parameter acceptable solution for some span. Then, proceeding as we did 
previously, we assign a nonzero value to one of the h.., and this coincident sample of 
the kernel becomes a norm that scales all of the other samples. 
lem, i f ,  for example, we were to set h 
the other h.. = 0 no longer minimizes the mean square of the r 
must be sought. 

11 P 

13 
This solves our prob- 

= 1 in the example for D = 2, then setting 1 , l  
but some other values 9 P' 

One effect of the perturbations has been to rob us  of our former technique 
(section 3. 5) for determining the span of the 1-parameter solution. It is no 
longer of any value to check for the minimum span for which a solution exists 
when one of the h.. is constrained to be nonzero, since the only exact solu- 
tions a re  now the trivial solutions. A similar procedure is still available, how- 
ever, and w i l l  be discussed below. 

Now we turn to the details of the method for  finding the "best" solution to the homo- 

13 

geneous equations. 
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4.1 ESTIMATING THE SOLUTIONS TO THE HOMOGENEOUS EQUATIONS 

We shall assume that a zero-mean noise signal e(t)  is added to an IRT s(t). The 
addition of this noise gives rise to the perturbed IRT z( t )  = s(t) + e(t), from which we 
desire to find a best estimate h(t) of the true minimum kernel, h(t). It is therefore nec- 
essary to define the meaning of best estimate. 

A 

The first step is to discover the effect of the noise on the homogeneous equations. 
For convenience, the simplest case, for D = 1, will be used in the discussion. For N 
periods of s(t) the set of homogeneous equations for D = 1 is 

The noise signal e( t )  causes the observed samples to deviate from the true values. The 
true values can be written in terms of the perturbed samples as follows. 

Substituting these in Eqs. 13 gives 

or 

o r  

- where ri = hl ,  2ei, hl ,  lei, 2' 
Since the residuals ri a re  unknown, Eqs. 15 cannot be solved even i f  they a re  con- 

sistent, which they almost certainly will  not be for N > 2. 
quantities h and h must remain unknown. 

Hence the true values of the 

191 1 ,2  
Primarily as a matter of convenience, the criterion used to define the best esti- 

mate of the true values of the unknowns h and h shall be that the estimated 
A A 191 1 ,2  

values, h 
7 

i' and h l ,  2, minimize the mean-square values of the residuals r 1,1 
The quantity to be minimized then is 

i= 1 i= 1 



or, with the usual notation for  the average, 

Setting the partial derivatives of this expression with respect to h l ,  
for a minimum gives 

and h l ,  to zero 

- 

Since, in general, there is no reason for these equations to be dependent, the solution 

to these equations as they stand is hl ,  = hl ,  = 0, which minimizes r2 but is not very 
satisfying. To avoid this result, the value of one of the unknowns will be fixed and used 
as a norm. 

- 
h A 

i '  

If the variable h is chosen as the unity norm, then there is no derivative with 1 ,2  
respect to this variable, and the first of Eqs. 19 does not exist, which leaves 

to be solved for the best estimate of h. ,. This optimum value is 

N N  

s s  i, 2 i, 1 

If the variable h is 1.1 

1.1 

chosen as the unity norm, Eqs. 19 reduce to 

NZ N N  

S - s  i ,  1 h l ,  2 i, lSi, 2 = O 

which has the solution 

N C V  

A 'i, lSi, 2 
h1 ,2 -  ,2 ' 

S i, 1 

which is not necessarily the same a s  the solution to Eqs. 20. 

will depend upon which variable is chosen as the norm. This irritation can be elimi- 
nated without much inconvenience in the simple case of D = 1 by adding the constraint 
that the estimated values of the noise added to both samples of a given sample pair be 
equal. In that case the solution is independent of whichever variable is chosen as the 

In general, the solution 
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norm. 

Linear equations that are not at all convcr,ient. Therefere the dependency nf the esti- 
mated values upon the choise of the norm must be accepted if the convenience of linear 
equations is to be retained. 

Anyone familiar with statistics w i l l  recognize that the mechanics of finding h 
A 191 
h l ,  is the same as that for finding the linear regression line for the set of points 

{ zi, 1, zi, 2} which is constrained to pass through the origin. 

would correspond to different assumptions about the direction in which the mean- square 
e r r o r  is to be minimized; that is, whether the e r ro r  is in the first or second sample of 
the sample pairs. 
Eqs. 20 and 2 1  a r e  quite different from those from which the regression line is derived. 
The following graphical interpretation is intended to give some insight into the deriva- 

For  D 3 2, however, the cases of most interest, this constraint yields non- 
1. 

h 

and 

Equations 20 and 21 
i= 1 

The assumptions that form the starting point for the derivation of 

1 tion of Eqs. 2 0  and 21. 

I 2nd I sa 

I 
l a *  

a 
a *  

a 
a 

l a 

Figure 10 

a 
a 

a 

a 
a 

a 

a 

Fig. 10. Periodic sample pair  space for span 1 .  

is a plane on which points whose coordinates a re  the periodic sample 

-1 a re  plotted. If there were no noise, and these really were the 
i= 1 

samples of an IRT having a kernel of span D = 1, then these points must all lie on a 
straight line through the origin. This is so because the homogeneous equations a re  the 
equations of a straight line with zero intercept. The slope of this line is the ratio of 
the kernel sample pairs which a re  coincident with the sample pairs of the IRT. 
finding this straight line is equivalent to finding the desired samples of the kernel. 

Thus, 

In Fig. 10 we assume that the coordinates of the points a r e  periodic sample pairs 
of an IRT with kernel of span D = 1 ,  with noise added to it. Because of the added noise, 
these points do not lie on a straight line through the origin. Then the problem is to fit 
a best line to the set of points. A graphical interpretation of the process by which this 
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"best" line is determined is worth studying. 
It has been decided that the "best" line is to be determined by choosing the values of 

A A 2 
h. , and h, that minimize the mean of the squares of the residuals, r:. Let the 
1, I 1, L A 

values of the residuals ri corresponding to  the values h 1, and h h l ,  of the uLnknowns be 
A r 
mated sample pair point" (si, 1, si, 2 )  lying on the "best" line: 

Now,  corresponding;^ the sample pair point (gi, 1, gi, 2 )  we can visualize an "esti- 
n~ i' 

A A  A A  
s h - S  h = O .  i, 1 1 , 2  i , 2  1, 1 

This point is the best estimate of the true value of the sample point before the noise was 
added. The exact location of this point cannot be determined, however, since it depends 
upon the choice of impulse areas. Then, the estimated values of the noise, ei, 
ei, 2' 

and 
A a re  the differences between the estimated and measured sample pair points: 

N h 
= s  - s  A 

ei, 1 i, 1 i, 1 

i, 2 ei, = si, - s 
A N A (23 )  

The values of these estimated e r ro r s  cannot be determined either, until the impulse 
Figure 11 shows possible locations for the measured and estimated areas  a re  chosen. 

2nd 2nd 
sample noise ^ h l  +, -Gi ,2 = ;i 

le 

I + , I  

1st 
noise 

sample 

somple ;. 1 , 1  T. 1,2 

A Fig. 11. Graphical interpretation of the residual ri with hl ,  as norm. 

points in the sample pair plane, along with the %est" line given by Eq. 22. Equations 23 

show that an "estimated noise sample pair" plane can be superimposed upon the sample 
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4 A  
pair plane, with a set of coordinates having their origin at the point (si, 1, si, 2 ) .  

point (Zi, , Si, 2 )  in iiie sample pair  piane is tne point (e i,  1' ei, 2 
sample pair plane. The residual Ci is given by 

The 
j in the estimated noise 

which is a straight line in the estimated noise sample plane. 
the unity norm, the equation of this line becomes 

If h l ,  is designated as 

which is plotted in Fig. 12. 
that minimizes the mean square of the vertical distance from the line to the sample pair 

This diagram makes it clear that the "best" line is the one 

2nd 2nd 
le noise 

sample 
I 

gi, -:,, , Gi ,2 =;; 

f 

1st 
noise 
sample 

1st  

A 
Fig. 12. Graphical interpretation of the residual ri with h as  norm. 

1, 

point. Similarly, if h is chosen a s  unity norm, Eq. 24 becomes 1 ,2  
- r  

A b  A 
A -  
ei, 1 - h ~ ,  lei, 2 i' 

which is plotted in Fig. 13. 
mean square of the horizontal distance from the line to the sample pair point. 
the geometrical interpretation, it is obvious that the "best" line will  depend upon the 
choice of norm. 

From the preceding discussion and Figs. 12 and 13, it is clear that the location of 

In this case, the best line is the one that minimizes the 
From 

A b  
the estimated sample pair point (si, 1, si, 2 )  cannot be determined from the knowledge of 
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N A 

i ,  1 
) and r., since this information does not determine the values of e ('i, 1 si, 2 1 

and ei, 2. Therefore, any point on the best line is as good as any other point 

2nd 
sample 

/ i  

/ I  I 

/ I 

Fig. 1 3 .  

When the estimated sample point (gi, 1, gi, 2 )  

is chosen so that $ = 0, then the e r r o r  i,  1 n 

ei, is the negative of the residual qi. Here 

h l ,  is chosen as unity norm. 

1st  
sample 

A for the location of (Gi, 1, si, 2 ) .  

The essential difference between the method used here to determine a "best" line 
and the standard regression-line technique is the fact that both gi, andz i ,2  a re  con- 
sidered to be "noisy," whereas in the usual regression problems the true value of one 
of the coordinates is considered to be known exactly, and the other to be a linear func- 
tion of it, but perturbed slightly by some unknown process. This perturbation is 

assumed to account for its displacement from the true line in a direction parallel to its 
coordinate axis. 
the usual regression problem. 

h l ,  ei, 

residual to the mean-square e r ror .  
no e r ro r  at the sample points gi, 1, that is, ei, 
e r r o r  will occur at the sample points zi, 2. 

It is the mean-square value of this e r ror ,  then, that is minimized in 
In this problem, however, it is a function h l ,  2ei, - 

of the two e r ro r s  whose mean square is minimized, but the result is the same. 
In the special case under discussion (D= l ) ,  it is possible to relate the mean-square 

By choosing the kernel amplitudes so that there is 
= 0 (this can always be done), all of the 

A 

Then 
A A A 

i ,  2 ri = -hl, lei, = -e 

i f  h l ,  
this case, as shown in Fig. 13. 

kernel amplitudes for which minimizing the mean-square residual is in fact minimizing 
the mean-square error .  Unfortunately, for D > 1 such an interpretation of the residuals 

= 1. Thus, the mean-square residual is equal to the mean-square e r r o r  for 
This means that for D = 1 there is always a choice of 
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is not possible. 
D > 1 is straightforward. 
dimensions, a hyperplane is fitted to a set of points in 2D dimensions. The plane is 

fitted by minimizing the mean-square distance from the sample pair points to the hyper- 
plane in a direction parallel to the axis for  the samples of s(t) that a r e  the homogeneous 
equation coefficients of the unknown chosen as the norm. 

Otherwise, the extension of the ideas developed for the case D = 1 to 
Instead of fitting a straight liiie to a sei of points in two 

For an IRT of N periods, the set of homogeneous equations for span D is 

The addition of a noise signal e(t) to the regular pulse train s(t) would cause the 
observed samples to deviate from the true values. 

t e rms  of the observed samples as  in Eqs. 1 6 .  

The true values can be written in 

Define ED 

e D, 1 D, 2 1 
as the noise sample matrix [ "1 

e 2 , 1  2 , 2  * 
e * e 192 e 

J [ l - -Dt l , l  eN-Dt1,2 * . .  

e e 2 , 2  3, 1 3 , 2  * ' e D t l , l  eDt1 ,2  e 

e 
* eN, l  N , 2  

Substituting Eqs. 16 in Eqs. 26 gives 

-- -I'ne indexing of the matrices in Eqs* 26 is based t>ie w---:-J -..--l-" o.rotom nf t J C L  LUU, UCulrpAG " J  " C L I I I  "I 

the IRT.  
conventional "row, column" system of indexing matrices. Let 

For the purposes of the following discussion it is convenient to change to the 

- -  
[E] = 1.; I 

be an N - D + 1 by 2D matrix with ui, as  the element in the ith row and jth column. Let 

= HDl (29) 

be an  N - D t 1 by 1 matrix with xi as the element in the ith row. Let 

[WI = LE:] 

be an N - D t 1 by 2D matrix with w i, j 
Equations 26 in the new notation become 

as the element in the ith row and jth column. 

[E] XI = [w] XI. (31) 
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N-Dt1 as Defining the residuals 

j= 1 i= 1 

allows Eqs. 31 to be written 

As for the case of D = 1, we desire to find the X] that minimizes the mean-square 
values of the residuals, relative to some choice of a norm. It is sufficient to minimize 
the sum of the squares of the residuals, since the mean can be found by dividing by N - 
D + 1 .  Then the quantity to be minimized is 

N-Dtl 

i= 1 i= 1 j= 1 
( 3 3 )  

It is convenient to defer the choice of the norm for the time being. 
Setting the partials of Eqs. 33 with respect to each of the variables to zero for a 

minimum gives the 2D equations 

2D 

k= 1 

(34) 

Dividing these equations by N - D t 1 ,  the number of original equations, allows the 
replacing of the sums on i by averages. The equations become 

o r  

{ 1 'j, kxj = f D 8  

k= 1 

(35) 

" 

These will be called the normal homogeneous equations because j ,  k = ui, jui, k' where c 
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they a r e  identical to the normal equations obtained in linear regression problems. 

omitted, since there is no partial derivative with respect to xn. 
If x is selected as the normed variable, t h i i  the equatioii for which k = rr must be 

Instead, the equation 
n 

x = value of norm n 

can be substituted. This gives 2D equations in 2D unknowns, which guarantees a solution. 

matrix [u] as 
The matrix [C] of coefficients c.  can be conveniently expressed in terms of the 

N J J k  

[C] = (N-Dtl)-l [;IT [e ] ,  

- T  where [U] is the transpose of [?I. This is easy to show. For, in general, i f  

for some 2D by N - D t 1 matrix [VI, then 

N - -  t 1 

k, j 
i= 1 

Now if [VI = (N-Dt11-l [UIT, 

. = (N-D+~ )-' zi, vk, 1 

then 

and 

N--+  1 

c = (N-Dtl)-' 1 'i, k'i, j 
i= 1 

N N  = u. .u 
L J  i ,k  

as, in fact, is the case. 

4 . 2  HOW TO FIND THE SPAN OF THE MINIMUM KERNEL IN THE 
PRESENCE OF NOISE 

One of the difficulties to be overcome in finding the minimum kernel is that its span 
is not known. 
ideal "noiseless" case whenever a 1-parameter acceptable solution is known to exist. 
It was suggested that the homogeneous equations be set up and solved for D = 1 ,2 , .  . . , 
etc. until a nontrivial solution is obtained, which would then have to be the acceptable 
solution of minimum span. 

A strategy for determining the duration w a s  given in section 3. 5 for the 

This method cannot be used in the "noisy" case because the homogeneous equations 
are almost never consistent, and therefore only the trivial solution exists. The method 
described here of fitting a "best" solution to the homogeneous equations by solving the 
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normal homogeneous equations guarantees an answer, but not a solution, for any set  of 
homogeneous equations. A strategy similar to that for  the "noiseless" case could con- 
ceivably be used if  there were a test whereby the correct span could be recognized when 
encountered. 

Such a test does, in fact, exist. The test consists of solving the normal equations 
for span D = 1,Z.. . , etc. and examining the behavior of the residuals obtained by sub- 
stituting the solution to the normal equations back in the original homogeneous equa- 
tions. When the assumed span is correct, the residuals will, in general, be noticeably 
smaller in magnitude. The explanation for this phenomenon is as follows. 

As a preliminary notion, it must be appreciated that the rank of the coefficient 
matrix of the normal equations (Eqs. 34)  is the same as that of the coefficient matrix 
of the homogeneous equations. Since we have shown that the coefficient matrix of the 
normal equations is the coefficient matrix of the homogeneous equations multiplied by 
its own transpose, the following theorem is sufficient to prove the assertion. 

Let [A] be an m X n matrix. THEOREM 5. 
Proof: Let rank [A] 

Consider the product of the compound of [AIT with the compound of [A]. 

Then rank [AIT [A] = rank [A]. 
T = r. Then the rth compound9 of [A], [A](r), has at least one 

nonzero entry. 
By the 

9 Binet- Cauchy theorem, 

[AIT(') [A]") = ([A]T[A])(r). 

Since 
T (r)  

the diagonal elements of ([A] [A]) a r e  the sums of the squares of the elements 
T in the corresponding columns of [A](r), they cannot all be zero. Hence rank [A] 

By a well-known theorem, rank [AIT [A] C r. [A] = r. // 
In general, the "noisytf homogeneous equations for which the "best" solution is to 

be found wi l l  have only the trivial solution if  the number of equations is equal to or 
greater than the number of unknowns. That is, even though the "true" equations have 
a 1-, o r  more, parameter solution, the noisy equations do not, because the addition of 
the noise destroys the dependency of the equations. 
the signal, however, then it might be expected that the equations are  "almost depen- 
dent, It a property generally known as ill-conditioned.' This property is poorly defined, 
but for a set of n equations in n unknowns a measure of it might be the size of the 
determinant of the coefficient matrix relative to its own minors. 
minant, the more ill- conditioned a re  the equations. 

[Alar .  
T Therefore, rank [A] 

If the noise is small compared with 

The smaller the deter- 

Since, by Theorem 5, the rank of the normal equations is the same as  that of the 
homogeneous equations for the "noiselessIt case, it is reasonable to expect that if  the 
addition of noise to the homogeneous equations changes dependent equations to ill- 
conditioned equations, the corresponding homogeneous equations would be similarly 
changed. 
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In order to see how the test for the minimum span works, the solutions to the nor- 
mal  equations must be considered for three different cases: for D less  than, equal to, 
and greater than the minimum span. 

When D is less  than the minimum span, the "noiseless" homogeneous equations 
have only the trivial solution, and so do the "noiseless" normal equations. But the nor- 
mal  equations a re  modified by deleting the equation resulting from setting the derivative 
with respect to the normed variable to zero, and inserting the equation 

x = value of the norm, n 

where xn is the normed variable. 
"noiseless" equations have a 1-parameter solution. Since this is not the case, the 
equations that a r e  solved a re  very different from the correct normal equations, 
namely the unmodified equations. Therefore the solutions will, in general, be very 
different from the correct solution - the trivial solution. Substitution of the solution 
back in the original homogeneous equations w i l l  therefore give large residuals. 

This procedure is based on the assumption that the 

When D is equal to the minimum span, it w i l l  be assumed that the ltnoiselesslf 
homogeneous equations a re  1 -parameter. Then the "noiseless " normal equations a re  
also 1-parameter, and the modified equations yield the correct solution i f  xn # 0. The 
noisy equations a re  ill- conditioned, but this ill- conditioning is removed by the fixing 
of a norm. If the noise is not large, then the solutions that a r e  obtained are  assumed 
to be near the true solutions, since the equations a re  nearly the same. 
these solutions in the original homogeneous equations should yield residuals that a r e  
much smaller in magnitude than those for lesser span because the "correct" set of nor- 
mal  equations w a s  solved. A measure of the over-all magnitude is the r m s  value of 
the residuals over all the homogeneous equations for each set of 2D sample pairs, 
averaged over all the sets of sample pairs for the waveform. When this number shows 
a significant drop for some span in the sequence, then the minimum span has been 
encountered. 

Substitution of 

When D is greater than the minimum span, the "noiseless" homogeneous equations 
The "noiseless" normal equations also have a 

Thus the "noisy" equations will be ill-conditioned for 
have a more than 1-parameter solution. 
more than 1 -parameter solution. 
small noise, and this ill-conditioning is not removed by modification of the equations, 
since only one variable is fixed. 
equations a re  solved, they almost always have a unique solution, the only exception 
being the unlikely event that the equations really a re  dependent. By solving the ill- 
conditioned equations, the unknowns that could have been assigned values to eliminate 
the ill- conditioning effectively have values assigned to them in the solution process, 
and the other unknowns solved in terms of them. These fluncontrolled" solutions a re  
useless and show up as a scattered distribution of points when they a r e  plotted for a 
sequence of samples of the waveform that is being analyzed. 

When the normal equations for a set of ill-conditioned 

The solution that is obtained wi l l  give an average r m s  residual less  than o r  equal to 
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that obtained from the equations for a lesser  span. It is clear that it cannot be greater 
because a "best" solution to the "noisy" homogeneous equations for some span gives 
essentially the same residuals for equations of greater span, the extra unknowns being 
set to zero. Thus if a "bestll solution for  these equations of greater span gave a larger 
average rms residual than those of lesser,  this solution could not be the "best" solu- 
tion, since a "better" solution has been demonstrated. This is not to say that the "best" 
solutions for two sets of homogeneous equations of different spans (both equal to o r  
greater than the minimum span) a re  likely to be nearly the same, even though the aver- 
age rms  residual is nearly the same. 
solutions very different from the "best" solution may give residuals that a re  nearly the 
same. 

It is a property of ill-conditioned equations that 

10 A convincing example of this situation has been given by Hartree. 
In summary, the test for the span of the "acceptable" solution of minimum span 

is as follows. The "best" solution to the homogeneous equations is determined for D = 1,2,  

3,  . . . , etc., until a large relative drop in the average r m s  residual is encountered. 
Then the span for which the drop occurs is the "best" estimate of the minimum span. 
If there is no large relative drop until D = N, then either the noise is too great o r  the 
minimum span is N. 

Again, we cannot say that the lowest span for which an "acceptable" solution exists 
is the span of the minimum kernel. A s  we have pointed out, we can only be sure  that 
we have found the span of the minimum kernel i f  the minimum span for which there is 
an "acceptable" solution is the same for a large number of periodic sample pairs. 
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V. ESTIMATING THE MINIMUM KERNEL AND THE IMPULSE AREAS 

Our ultimate goal is to estimate the minimum kernel of a given IRT and to find a 

set  of impulse areas that can be used to synthesize the IRT from this kernel. We shall 
now apply the results of our previous work to show how these objectives can be 
achieved. 

5.1 ESTIMATING MANY SAMPLES OF THE MINIMUM KERNEL 

We have shown how one set  of coincident sample pairs of an IRT with noise can be 
estimated by finding the "best" solution to a set  of homogeneous equations. It is now 
possible to estimate as many samples of the kernel as desired simply by choosing 
other sets  of periodic sample pairs of the IRT and finding a "best" solution to the cor- 
responding homogeneous equations. But, since we desire to normalize all of the 
samples of the kernel to one specified norm, it is always necessary to include the 
samples of the IRT that a re  coincident with the norm as one set of periodic samples in 
the chosen set  of periodic sample pairs. The other set of periodic samples can be 
chosen at will, and each time a new selection is made the normal homogeneous equa- 
tions can be solved to give a "best" estimate of the coincident samples of the kernel. 
The entire procedure is illustrated by the following simple example. 

Let us construct an IRT with a kernel of span 2 having sample values 

h l ,  - - 1, h l ,  = 1, h l ,  - - 0, h2, 1 = 0, h2, = 1, h2, = 1. 

Choose as impulse areas the numbers 

- a o -  0, a = 0, a = 0, a 3 =  1, a4 = -1, a = 1, a b =  0, a 7 =  0. 1 2 5 

Then the samples of the generated IRT s(t)  can be found by adding. We then perturb 
this exact IRT by an e r ro r  signal e(t)  to get the final set of periodic samples of the 
perturbed IRT s(t) on the bottom line. 

1 2 3  4 5 6 7 8 Period 
Samples of 

aoh(ttT) 

a,h(t) 

a2h(t-T) 

a3h(t-ZT) 

a4h(t-3T) 

a5h(t-4T) 

a6h(t-5T) 

agh(t-6T) 

s(t) 

e(t) 

a t )  
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We shall now t r y  to estimate the minimum kernel by finding "best" solutions to the 

appropriate homogeneous equations for spans 1, 2,  and 3 .  In each case the norm 
= 1 will  be chosen. Thus we shall choose as our two sets  of periodic sample pairs 

the first and second samples of each period, and the first  and third samples of each 
period. The steps in the process of solving the normal equations for each of these 
cases a re  illustrated in Figs. 14, 15, and 16. Each figure shows the coefficient 
matrices of the homogeneous equations [SD 1, and the normal equations whose coefficient 
matrices are determined by premultiplying [SD] by its transpose, and adjusting the last 
row so that h Also shown are  the solutions to the normal equations, the resid- 
uals that are due to these solutions, and the r m s  residual for each set  of normal equa- 
tions. The average rms  residual given at the bottom of the figure is taken as a measure 
of the llfitll of the solutions to the normal equations. This last number is 0.42, 0. 27, 

and 0. 24 for D = 1, 2, and 3, respectively. 

h 

h l ,  1 

"N 
"N 

A 
= 1. 1 , 1  

We note the large drop in the average rms  residual going from D = 1 to D = 2, and 
We therefore con- the subsequent relatively small decrease in this number for D = 3.  

clude that D = 2 is the correct span. Now a problem ar ises  that we have not noted 
before. If we accept D =  2 as the correct span, then we note that we have two estimates 

h2, 
estimate. Thus we shall take as our estimate of the coincident samples of the minimum 
kernel 

h 
Since w e  have no information about which is "better," w e  a re  free to use either 

These estimated values compare only moderately well with the "true values," but it 
must be appreciated that the e r ro r s  introduced were quite large. 
results of Section VI1 a re  more in keeping with what is encountered in practice. 

The experimental 

5.2 FINDING THE IMPULSE AREAS 

Since it may sometimes be desirable to find the impulse areas  corresponding to an 
estimated kernel, we propose a method for finding them, although no examples of its 
use a re  given. 

In the noiseless case, finding the impulse areas  for just one set  of periodic sample 
pairs of an IRT and a given acceptable solution to the homogeneous equations is just a 
matter of solving the generating equations (Eqs. 8) for all p. Since the coefficients a r e  
acceptable solutions to the corresponding homogeneous equations, a solution to these 
generating e quat ions is guar ant ee d. 

In a practical case, the samples of the waveform to be analyzed a re  not likely to be 
exactly the samples of an IRT.  Also, the coefficients of the corresponding generating 
equations wi l l  be only the estimated samples of the kernel as found by solving the nor- 
mal  equations. Therefore, an exact solution to the generating equations wi l l  almost 
never exist. The "best" So a "best" estimate of the impulse areas  must be obtained. 
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estimate wi l l  be those impulse areas that minimize the mean-square e r r o r  between the 

samples of the IRT that they. generate and the samples of the waveform that is being 
analyzed. 

When the number of impulse areas  to be found is small, the "best" impulse areas  
can be found by solving the set  of normal equations corresponding to the generating 
equations. The normal equations corresponding to an arbitrary set  of linear equations 
can be derived a s  follows. 

Consider the following set of linear equations. yr i= 1 1 3 J .  

Find the set of numbers { x j} ;= that minimize 

i= 1 j= 1 

Setting the partial with respect to xk to zero gives the normal equation 

o r  

The entire set of normal equations obtained in this way is 

In matrix notation these equations can be written 

[CIT [c] XI = [CIT Y]. 

For  an entire set of homogeneous equations, the normal equations in matrix notation 
would be 
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The notation of section 5. 1 is combined with the circumflex and tilde to denote estimated 
and noisy values, respectively. 

When the number of impulse areas to be found is large, the round-off e r ro r s  
involved in solving the normal equations for a large number of unknowns may cause 
large e r r o r s  in the solutions. In this eventuality, an iterative procedure would be pref- 
erable if the convergence is sufficiently rapid. By taking advantage of the particular 
arrangement of entries in the coefficient matrix of the generating equations, a useful 
iterative procedure can be developed. 
than the last, and the first iteration should be "close." 

Each new iteration is guaranteed to be better 

The 'method is the following. 
(i) Choose a set  of initial values for the unknowns in the following way. Find the 

initial estimate of the unknown ai by solving the normal equations corresponding to the 
subset of generating equations in which a. appears as an unknown. 
tions will have, at most, 2D-1 unknowns. 

These normal equa- 
l 

(ii) With all the other unknowns fixed at their values as determined in(i) ,  choose as 
the next estimate of the first unknown the value that minimizes the mean-square e r ro r  
for all the waveform samples to which it contributes. Repeat this procedure for each 
succeeding unknown. Each step involves solving the normal equation for DM (or less)  
equations in one unknown. The new values selected in this way must be at least as good 
as those determined in(i) ,  since the value determined by the normal equation is the one 
that minimizes the e r ror ,  that is, the 'best" value; therefore the previous value cannot 
be better. 

(iii) Repeat (ii) for all the unknowns until the mean-square e r r o r  between the gen- 
erated and the actual values is no longer reduced significantly. 
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VI. SUGGESTIONS FOR CHOOSING THE NORM AND FINDING 
THE IMPULSE SPACING 

6 . 1  CHOOSING THE NORM 

When the homogeneous equations a re  solved to find the periodic sample pairs, one 
of the unknown samples must be designated as  norm, and assigned an arbitrary value. 
This value serves as a scale factor for all of the other unknowns when the solution is 1- 
parameter. It does not matter which unknown is chosen as norm, as long as  it is not 

constrained to be zero by the equations themselves. 
Consider, fo r  example, the homogeneous equations 

h1,2 = o  

h2, l  -h1 ,2  - % , 1  = O 

-h3, 1 - h3, 2 t h  = O  191 

= 0 .  h4, 2 

- The general solution to this set of equations is h l ,  = h2, 2 ,  h l ,  - h2, = 0. If h l ,  or 

h 2 , 2  a re  given fixed values, then the equations can be solved. a r e  
assigned nonzero values, the resulting equations do not have a solution because the rank 
of the coefficient matrix will be less than the rank of the augmented matrix.6 Since the 

If h1 ,2  or h 
2 , 1  

homogeneous equations do not have a solution in the noiseless case, the normal equa- 
tions wi l l  not yield a "best" solution in the noisy case. 
ferent norm. 
the waveform is known, a norm can always be chosen from the "exposed" first period 
with assurance that it is nonzero. 

The remedy is to choose a dif-  

Since we a re  primarily interested in the case in which the beginning of 

6 . 2  FINDING THE IMPULSE SPACING 

A general method for finding the impulse spacing, or period as we have called i t ,  
is unknown to the author. 
useful for some types of IRT. 

It is possible, however, to make some suggestions that a r e  

(i) Direct examination of the waveform. This rather obvious method can always be 
used when the kernel amplitudes a re  constant or slowly varying over a number of periods 
substantially greater than the span of the kernel. 
periodic or quasi-periodic function, and the period is equal to the spacing of the 
impulses. Many physical signals that can be modeled as IRT exhibit such a "steady- 
state" region from which the period can be determined. 

Direct examination of the waveform may also reveal the period if the kernel has 

relatively high sharp peaks that show up in the IRT at one-period intervals. In any 
case, the waveform should be examined for any repetitive features that would suggest 
the period. 

Within this interval the IRT is a 
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(ii) Examination of the autocorrelation function. A s  can be easily shown, the auto- 
correlation function of an IRT is itseil" an IRT whose kernel is the autocorrelation f ~ n z -  
tion of the kernel of the original train. The autocorrelation function of 

N 
s ( t )  = 1 anh(t-nT) 

n= 1 

is 

al 

SS(u) = I-, s(t) s( t tu)  dt 

N N 
anh(t-nT) 2 amh(t-mTtcr) dt 

n= 1 m= 1 

N N  

= 1 1 anarn I-: h(t-nT) h(t-mTtu) dt. 
n=l m=l  

Putting u = t - nT gives 

N N  
F P  

SS(u) = 2 anam 3 h(u) h(ut(n-m)Ttu) dt 
-m ~. n=l m=l 

= &  c anamHH(u-(m-n)T), 
n=l m=l  

where 

al 

HH(u) = J-, h(t) h(ttu) dt. 

If the kernel is weakly correlated with itself for displacements greater than T/2, then 
the autocorrelation function of the IRT will be a ser ies  of pulses of span D = 1,  and the 
period will be easily detected. 

(iii) Examination of the spectrum. Since an IRT has features recurring at regular 
intervals, it seems likely that the spectrum of the pulse train would have a peak at the 
frequency corresponding to the period. 
features also. 

The spectrum shows some other characteristic 
The Fourier transform of 

N 
s(t) = 1 anh(t-nT) 

~ 

n=l .- 

is 
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- jnT w 
S( jw)  = H(jw) 

n= 1 

The spectrum of an IRT is a periodic function in w ,  with "period" 2rr/T, that is, 
"amplitude-modulated" by the spectrum H(jw) of h(t). This characteristic ttamplitude 
modulation" may be difficult to detect, but if it should be apparent for a given waveform, 
then the period of the IRT can be computed. This method is only likely to be useful if  

the spectrum of H ( j o )  varies slowly over the interval 28/T, and stretches over many 
such intervals. 
short compared with the time interval T ,  in which case the period, as  well a s  the ker- 
nel itself, w i l l  be quite obvious from the waveform. 

Unfortunately, such a spectrum usually means that the pulse h(t) is 

(iv) Correlation with a sine wave. Correlation of s(t) with a sine wave to determine 
the period of the IRT is exactly the same as looking for a peak in the spectrum of s(t) .  
Since the spectrum can often be easily obtained, there is no reason to use this method. 
There is no guarantee that this method wi l l  work because of the drastic influence that 
the spectrum of h(t) may have on the spectrum of the IRT. Also, sharp peaks in the 
spectrum mean that the time function has periodicities, which a r e  usually easy to 
detect by direct examination of the waveform. 
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VII. EXPERIMENTAL RESULTS 

The techniques that have been developed will now be applied to particular examples. 
Three different examples of the extraction of the minimum kernel a r e  presented, and 
their properties noted. 

7.1 EXAMPLE 1 

Figure 17 is an oscilloscope trace of the response of an RLC circuit to a short rec-  
The trace of this excitation pulse is superimposed on that tangular excitation pulse. 

Fig. 17. Actual kernel of the IRT of Example 
(0.4 msec/cm). 

1 

of the response. 
same rectangular shape but different amplitudes, the IRT shown in Fig. 18 was pro- 
duced (the waveform is zero outside the interval shown in the photographs). 
tations a r e  superimposed for reference, and show the period. 

By exciting the circuit at regular intervals with excitations of this 

The exci- 

Samples of this IRT were taken directly from the photographs, at intervals corre- 
sponding to the smallest graticule division. The measurements were made to the nearest 
half-division of the smallest graticule division. 
tions were then solved under the assumption of span of 1-5 periods, and the average 
rms  residual computed for each span. 
tion of duration in Fig. 19. The graph shows a large decrease going from a duration of 
1 period to a duration of 2 periods, thereby indicating that 2 is the "correct" span, that 
is ,  the span of the minimum kernel. 

The corresponding homogeneous equa- 

The average rms residual is plotted as a func- 

In Fig. 20, the solutions to the homogeneous equations, as computed for spans of 
1 , 2 ,  and 3 , a r e  plotted superimposed on the actual kernel for comparison. The following 
features a r e  of interest. 
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Fig. 18. The IRT of Example 1 (0 .4  msec/cm). 
tinues from the top trace. 

The bottom trace con- 

av. 10 
rms 
res. z~ 

4- 
Fig. 19. Average r m s  residual as a func- 

tion of span for Example 1. 

0 22zY?? 
1 2 3 4 5 span 
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Fig. 20. Solutions of the homogeneous equations compared with 
the waveform of the actual kernel for Example 1. 

(i) The actual kernel is the minimum kernel. The actual kernel is essentially zero 
after two periods, that i s ,  it has span 2, and the solutions a r e  very close to the wave- 
form of the actual kernel for span 2. 

(ii) The solutions for span 1 lie very close to  the waveform of the actual span in the 
This feature will appear in the other examples, but no satisfactory expla- first period. 

nation can be give= f G r  the i;hcz=men=n. 

(iii) For  span 3 the solutions become tterratictt after the first  period, no longer 
tracing out a continuous curve. 
examples. This behavior is due to the ill-conditioning of the equations for spans greater 
than the minimum, as predicted in Section IV. 
appears to be very good. 

This feature wi l l  be more noticeable in the other 

The Itfit" in the first period, however, 

7.2 EXAMPLE 2 

The IRT of this example w a s  supplied by Professor J. S.  MacDonald. All of the 
computations were made by the author without foreknowledge of the actual kernel. 

Figure 21 is an oscilloscope trace of the actual kernel which generated the IRT of 
Fig. 22. Figures 21a and 22a show the complete waveforms; Figs. 21b and 22b show 
the same waveforms with expanded time scales. The zero amplitude line is the one on 
which the 2-cm radius circles appear on the graticule. The waveforms a r e  essentially 
zero outside the intervals shown in the figures. The generating pulse waveform of 
Fig. 21a is actually the response of a linear system to a relatively short rectangular 
exciting pulse, and the regular pulse train was generated by exciting this linear system 
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Fig. 21. (a) Actual kernel of the I R T  of Example 2 (2 msec/cm). 
(b) Actual kernel of the IRT of Example 2 (0 .5  msec/cm). 

The bottom trace continues from the top trace. 
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Fig. 22 .  (a) The IRT of Example 2 (5 msec/cm). 
(b) The IRT of Example 2 (0. 5 msec/cm). 

The bottom trace continues from the 
top trace. 
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Fig. 22. Continued. 
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with a sequence of these pulses occurring at regular intervals. 
a r e  shown in the bottom trace of Fig. 22a. 
ignored. 

These exciting pulses 
The trace ai the bottoni of Fig. 22b can be 

The period of the IRT in Fig. 22b is 2 msec (4 cm on the figure). 

av . 
rrns 
res. 

4000 

9 
2000 3000 

1000 %.o 

0- 
1 2 3 4 5  

span 

Samples of this IRT were taken 
directly from the photographs at inter- 
vals corresponding to the smallest grat- 
icule division (20 sampes per period). 
The measurements were made to the 
nearest half-division of the smallest 
graticule division. The corresponding 
homogeneous equations were then solved 
for spans of 1-5 periods, and the aver- 
age rms  residual computed for each 
span, and plotted in Fig. 2 3 .  This graph 
shows that 2 is the I'correct" span. 

Figure 2 4  compares the solutions for 
span 1 , 2,  and 3 with the waveform of the 

Fig. 2 3 .  Average rms  residual as  a func- actual kernel. The following features 
tion of span for Example 2.  

a r e  of interest. 
(i) The actual kernel is not the 

minimum kernel, since the span of the actual kernel is certainly greater than 2 .  

Figure 2 3  shows that the estimated samples of the kernel of minimum span 2 a r e  nearly 
coincident with the first two periods of the actual kernel. 
nel shows that except for a scale factor it very nearly repeats itself every two periods. 

Examination of the actual ker- 

-100 L -100 L 

e 3  Period 

-1ooL 

Fig. 2 4 .  Solutions to the homogeneous equations compared with the 
waveform of the actual kernel for Example 2. 
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Thus the actual kernel is itself an IRT whose kernel is the estimated minimum kernel. 
Thus this estimated kernel is capable of generating any IRT generated by the kernel of 
Fig. 21. 

(ii) As in the previous example, the solutions for span 1 lie close to the waveform 
of the actual kernel in the first period. 

(iii) F o r  span 3 the solutions show a marked "erratic" behavior after about the 
As  before, this behavior is believed to be due to the ill- middle of the second period,. 

conditioning of the normal equations. 

7.3 EXAMPLE 3 

The IRT of this example w a s  generated artificially on a computer, and hence all the 
samples are accurate to approximately 8 figures. The actual kernel w a s  the function 

-0. lot t(t-13)(t-31) e 0 s t s 200 

This function is plotted in Fig. 25. The period w a s  chosen to be 20 time units, and 

2 3 4 5 6 7 Period 
-400 L '  

Fig. 25. Actual kernel for the IRT of Example 3. 

the impulse areas  selected from a table of random numbers (except for the 
zero amplitudes, included to make the IRT complete). These impulse areas  
a r e  listed in Table 1, The samples of the resulting IRT taken every time unit 
(20 samples per period) a r e  listed in Table 2. 

The homogeneous equations for these 
samples were solved for spans 1-5, and 
the average rms  residual computed and 

plotted for each span. This plot indi- 
cates rather dramatically that 4 is the 
"correct" span. The solutions for spans 
1-5 a r e  plotted in Fig. 27. The following 
features may be observed. 

1000 
:ii 800 

res. 2i 0 z 
200 

1 2 3 4 5 span 

(i) The actual kernel is not the min- Fig. 26. Average rms residual as a func- 
tion of span for Example 3. imum kernel. Futhermore, the actual 
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Fig. 27. Solutions to the homogeneous 
equations for Example 3. 

4 5 Period 

-400 

59 



kernel does not appear to be a scaled repetition of the minimum kernel. 

(ii) All five solutions match the actual kernel very closely in the first period. 
(iii) The solutions show a very pronounced “erratict1 behavior for span 5. 

ently the accuracy of the samples caused the normal equations to become very nearly 
dependent . 

Appar- 

Table 1. Impulse areas  for the IRT of Example 3. 

Read from left t o  r i g h t  and down t h e  page. 
E 
( 4E15.8 format 1 

The number following t h e  
is t he  power of 10 by which t h e  decimal f r a c t i o n  i s  t o  be mult ipl ied.  

I -  

0 2  - - 3  4 5 6 7 Period 

0 .  

‘“0 

-400 1 ’  
Fig. 28. Actual kernel as an IRT generated by the minimum 

kernel. 

It is not necessary to reconstruct the IRT from the estimated minimum kernel to 
be certain that it really is a kernel for the given IRT. Figure 28 is a demonstration of 
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Table 2. Samples of the IRT of Example 3. 

Read f r o n  l e f t  t o  r i g h t  a d  down t h e  page. The number following t h e  
E 
(4315.8 format) 

i s  t h e  power of 10 by which t h e  Cecinal f r a c t i o n  is t o  bc multiplied.  
Table is continued on the next four pages. 

There are 20 samples pe r  period. 

o0000000M: 0 0  00000OO00E 00 o O O O O O O O O E  0 0  ,03033GOOE 0 0  
000000000E 00 00000OO00E 0 0  o O O O O O O O O E  00  30C30000E 00 
000000000E 0 0  00000OO00E 0 0  oO0000000E 00 cCC329000E 00 
o00000000E 00 - 0 0 0 0 0 0 @ 0 0 E  0 0  - o O O G O O C O O E  00 -o00000000E 00 

- ~ 0 0 0 0 0 3 0 0 E  00  - 0 0 0 0 0 0 ~ 0 3 E  00  -o30000000E 00 - o C O C G O O O O E  00 
- 0 0 0 0 0 0 0 0 G ~  0 0  -0000000COE 00 -..00000000E 0 0  -oOCOOOOOOE 0 0  
- o 0 0 0 0 C @ O O E  0 0  - 0 0 0 0 0 0 ~ 0 0 E  0 0  -o00000000E 00 -o000000GOE 00 
-000000000E 00 - ~ 0 0 0 0 0 3 0 0 E  00 -o00000030E 00 o 0 i ) O O G O O O E  0 0  

o00000000E 0 0  * 0 0 0 0 0 0 0 0 t  00 v O O O O O O O O E  00 o00000300E 00 
o00000000E 00 000000000E 00 e O O O O O O O O E  00  000000000E 00 
~ 0 0 0 0 0 0 0 0 E  0 0  0000000GOE 00 e O O O O O O O O E  00 oOC300300E 0 0  
000000000E 00 0000000COE 00 oOOOOOOOOE 00 o0000G000E 0 0  
000000000E 00 000000000E 00 u O O O O O O O O E  0 0  o00000000E 00 
~ 0 0 0 0 0 0 0 0 E  00 a00000COOE 00 o O O O O O C O O E  00  o00000000E 0 0  
o00000000E 0 0  o 0 0 0 0 C G O O E  00 000000000E 0 0  o O O O O O O O O E  0 0  
000000000E 00 000000COOE 0 0  oOOOOOOOOE 0 0  o O O O O O O O O E  00 
~ 0 0 0 0 0 0 0 0 E  00 o00000000E 00 o000C0000E 00  o00OOOOOOE 00 
000000000E 0 0  oO0000000E 00 ~00000000E 00 o O O O O O O O O E  0 0  
o00000000E 0 0  o O O O O O O 0 0 E  0 0  oO000OOOOE 00 oOOCLOOOOE 00 
000000000E 0 0  o O O O O O O O O E  00 o O O O O O C O O E  0 0  o00000000E 0 0  
~ 0 0 0 0 0 0 0 0 0 E  00 o00000000E 00 o 0 0 0 0 O O O O E  00 ~ 0 0 0 0 0 0 0 0 E  0 0  
000000000E 0 0  o 0 0 0 0 G O O O E  00 ~ 0 0 0 0 0 0 O O E  00 o00000000E 00 
000000000E 00 o00000000E 00 o00000000E 00  o00000000E 00 
000000000E 00 o00000000E 0 0  o00000000E 0 0  o00000000E 00 
o O O O G O O O O E  0 0  oOOOOOOOOE 0 0  ~ 0 0 0 0 0 0 0 0 E  00 o O O O O O O O O E  00 
o O O O O O O O O E  0 0  oO000OOOOE 0 0  o O O O O O O O O E  00 ~ 0 0 0 0 0 0 0 0 E  00 
o O O O C O O O O E  00 o0000C000E 00 o00000000E 00 o O O O O O O O O E  00 
~ 0 O 0 0 O O O O E  00 ~ 0 0 0 0 C O O O E  00 o O O O O O @ O O E  0 0  o O O O O O O O O E  00 
oOOO00000E 00 ~ 0 0 0 0 0 0 0 0 E  0 0  a O O O O O O O O E  0 0  o0000OOOOE 00 
oOOO00000E 00 o00000000E 0 0  oOOOOOCOOE 0 0  o00000000E 0 0  
e O O O O 0 C O O E  0 0  ~ 0 0 0 0 O O O O E  0 0  o O O O O O O O 0 E  0 0  o O 0 O O O O O O E  0 0  
o O O O 0 0 0 0 0 E  00 ~00000000E 00 o O O O O O O O 0 E  00 o O 0 O O O O O O E  0 0  
0 0 0 0 0 0 0 0 0 ~  0 0  o00000000E 00 o00000000E 00 o00000000E 00 
000000000E 00 ~ 0 0 0 0 0 0 0 0 E  0 0  oOOOOOOO0E 00 o O 0 O O O O O O E  00 
~ 0 0 0 0 0 0 0 0 E  0 0  000000000E 0 0  o O O O O O O O 0 Z  0 0  o O O O 0 O O O O E  00 
oO0000000E 00 o00000000E 00 000000000E 00 o0000000OE 00 
oOO000000E 0 0  ~ 0 0 0 0 0 0 0 0 E  0 0  ~ 0 0 0 0 0 0 0 0 E  0 0  o00000000E 00 
o O O O O O O O 0 E  0 0  00000OO00E 00  o O O O O O O O 0 E  0 0  o00000000E 0 0  
o O O O O O 0 0 0 E  0 0  o00000OOOE 0 0  o00000000E 00 o00000000E 0 0  
000000000E 0 0  000000000E 0 0  000000000E 00 e00000000E 0 0  
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o 0 0 0 0 0 0 0 0 E  0 0  - 0 1 7 4 2 0 3 2 8 E  0 4  - 0 2 7 9 3 4 7 6 7 E  0 4  - 0 3 3 2 7 9 3 0 2 E  0 4  
- 0 3 4 8 4 4 3 0 0 E  0 4  - 0 3 3 7 3 4 1 1 9 E  0 4  - 0 3 0 8 1 7 3 9 2 E  0 4  - 0 2 6 7 6 9 3 4 1 E  0 4  

-036725250E 0 3  o 0 0 0 0 0 0 0 0 E  0 0  m31386868E 0 3  0 5 7 2 7 7 3 3 7 E  0 3  
o77740017E 0 3  o 9 3 0 0 7 8 5 9 E  0 3  o 1 0 3 4 2 8 2 3 E  0 4  e 1 0 9 4 2 3 3 2 E  0 4  

0 7 2 3 9 0 1 7 0 E  0 4  o 6 9 3 0 5 4 8 8 E  0 4  0 6 2 8 0 7 5 0 6 E  0 4  0 5 4 1 6 0 5 7 2 E  0 4  

- 0 2 2 1 0 7 2 9 1 E  0 4  - 0 1 7 2 2 0 4 0 8 E  0 4  - 0 1 2 3 9 4 5 1 0 E  0 4  - 0 7 8 3 2 7 0 9 8 E  0 3  

. i 1 1 4 5 8 9 8 E  0 4  .42711041E 0 4  0 6 1 4 0 7 1 5 3 E  0 4  0 7 0 4 4 1 5 r ; 2 E  0 4  

0 4 4 3 3 7 9 1 8 E  0 4  0 3 4 0 7 5 7 9 8 E  0 4  0 2 3 9 1 8 7 4 7 E  0 4  0 l k 2 5 7 3 2 2 E  0 4  

- 0 2 0 2 0 0 0 1 6 E  0 4  - . 2 3 9 7 4 i 3 2 E  0 4  - 0 2 6 7 8 2 1 4 0 E  0 4  - , 2 3 5 9 8 9 2 6 E  0 4  
0 5 3 5 9 4 4 1 9 E  0 3  - 0 2 6 0 3 6 6 7 2 E  0 3  - c 9 5 3 6 1 0 3 2 E  0 3  - 0 l 5 3 9 9 7 5 7 E  0 4  

- 0 2 9 8 0 8 8 4 3 E  0 4  - 0 5 1 7 0 7 3 1 3 E  0 4  - 0 6 4 4 5 2 3 3 0 E  0 4  e c 7 0 2 7 5 7 3 5 E  0 4  
- 0 7 0 9 7 9 2 4 3 E  0 4  - 0 6 8 3 0 6 6 6 1 E  0 4  - 0 6 2 5 0 5 0 4 1 E  0 4  - * 5 5 3 7 6 3 6 7 E  0 4  
- 0 4 7 3 2 1 1 1 8 E  0 4  - 0 3 8 8 7 4 9 3 C E  0 4  - . 3 0 4 3 9 3 6 6 E  04 - * 2 2 3 0 7 5 6 5 E  0 4  
- 0 1 4 6 8 5 7 6 2 E  0 4  - 0 7 7 1 1 0 6 9 9 E  0 3  - 0 1 4 6 6 2 3 2 0 E  0 3  oLIC032205E 0 3  

0 8 7 0 4 0 0 3 7 E  0 3  0 1 2 6 3 6 9 5 2 E  0 4  o 1 5 8 4 0 4 3 0 E  0 4  0 1 8 3 6 0 0 3 7 E  0 4  

0 8 7 6 8 8 1 2 5 E  0 4  0 8 5 2 4 3 9 5 7 E  0 4  0 7 9 1 4 7 4 8 9 E  0 4  0 7 0 7 0 7 7 7 8 E  0 4  
0 6 0 9 3 5 2 6 1 E  0 4  0 5 0 5 9 7 1 0 7 E  0 4  0 4 0 2 6 3 4 8 l E  0 4  - 3 0 3 4 6 1 3 1 E  0 4  
021130473-E 0 4  0 1 2 8 0 2 1 2 9 E  0 4  0 5 4 6 8 8 2 5 0 E  0 3  - 0 3 2 1 6 5 4 8 1 E  0 2  

- 0 1 7 5 2 4 5 4 0 6  0 4  - 0 8 5 4 7 3 7 1 8 E  0 3  - 0 2 8 3 3 2 8 6 7 E  0 3  0 5 1 0 2 3 3 4 8 E  0 2  
0 2 1 8 3 8 3 6 1 E  0 3  o 2 7 3 1 1 8 2 8 E  0 3  0 2 5 6 8 4 8 6 9 E  0 3  o2COE935SE 0 3  
0 1 2 8 2 9 0 2 9 E  0 3  0 5 5 5 1 2 3 1 0 E  0 2  - 0 6 1 7 0 5 1 6 9 E  0 1  - 0 4 9 5 3 2 4 7 0 5  0 2  

- 0 7 0 4 6 1 0 7 4 E  0 2  - * 6 7 1 9 6 6 1 5 E  0 2  - 0 3 9 7 1 8 0 9 6 E  0 2  0 1 0 7 4 9 0 5 2 E  0 2  

. 2 0 2 4 9 3 7 7 ~  0 4  . 5 4 0 6 2 7 0 3 ~  0 4  0 7 4 4 8 2 i i 6 ~  0 4  o e ~ 8 ~ 6 3 a i ~  0 4  

- 0 6 0 6 6 8 0 5 2 E  0 3  - 0 1 0 2 9 7 5 0 8 E  0 4  - 0 1 3 5 6 8 4 5 2 E  0 4  - ~ 1 5 9 5 0 4 8 2 E  0 4  

0 8 2 1 2 4 7 9 7 E  0 2  o 1 7 1 7 8 2 5 7 E  0 3  o 2 7 6 7 8 8 6 8 E  0 3  0 3 9 4 0 8 6 0 9 E  0 3  
0 5 2 0 6 3 1 2 8 E  0 3  0 3 3 2 0 4 7 1 6 E  0 4  0 5 0 6 6 6 2 6 2 E  0 4  0 6 0 2 2 3 5 6 3 E  0 4  
0 6 3 9 8 2 7 0 1 E  0 4  0 6 3 6 1 4 6 4 9 E  0 4  0 6 0 4 3 2 2 6 9 E  0 4  0 5 j L 5 5 0 3 3 E  0 4  
0 4 9 4 6 3 2 9 3 E  0 4  0 4 3 0 4 3 6 3 9 E  0 4  0 3 6 6 2 6 6 9 8 E  0 4  * 3 0 5 i $ 5 3 6 E  04  
.24926641E 0 4  . 1 9 9 e i 3 5 3 E  0 4  .15753326E 0 4  0 1 2 2 6 8 0 5 6 E  0 4  
0 9 5 1 7 3 0 9 1 E  0 3  0 7 4 6 8 5 7 0 2 E  0 3  0 6 0 7 2 5 1 6 9 E  0 3  0 5 2 6 8 9 3 4 1 E  0 3  
0 4 9 9 1 3 4 4 6 E  0 3  - 0 1 2 9 1 2 0 5 3 E  0 3  - 0 4 6 2 5 4 0 5 7 E  0 3  - 0 5 7 2 0 5 7 9 O E  0 3  

- 0 5 1 5 6 7 6 9 8 E  0 3  - 0 3 4 0 2 8 8 4 4 E  0 3  - 0 8 3 5 3 3 0 8 k E  0 2  0 2 2 4 6 6 3 6 5 E  0 3  
0 5 6 0 7 8 1 1 3 E  0 3  0 9 0 6 6 0 3 2 2 E  0 3  0 1 2 4 8 2 7 3 0 E  0 4  d 1 5 7 5 5 0 4 2 E  0 4  
0 1 8 8 0 9 1 4 0 E  0 4  0 2 1 5 9 4 6 1 5 E  0 4  o 2 4 0 7 9 8 0 6 E  0 4  0262Li7876E 0 4  
0 2 8 0 9 3 5 6 9 E  0 4  0 2 9 6 2 0 5 2 5 E  0 4  0 3 0 8 3 9 0 6 2 E  0 4  0 3 1 7 6 4 3 8 0 E  0 4  
0 3 2 4 1 5 0 7 9 E  0 4  0 2 9 7 5 7 5 0 8 E  0 4  o 2 8 0 7 9 1 1 9 E  0 4  o 2 7 0 9 8 1 5 5 E  0 4  
0 2 6 5 9 3 4 0 8 E  0 4  0 2 6 3 9 3 3 2 5 E  0 4  m2636SS53E 0 4  0 2 6 4 1 5 7 9 4 E  0 4  
0 2 6 4 6 8 3 9 8 E  0 4  0 2 6 4 7 4 0 6 5 E  0 4  0 2 6 3 3 3 9 1 6 E  0 4  0 2 6 2 2 2 1 7 5 E  0 4  
0 2 5 9 3 3 1 7 9 E  0 4  0 2 5 5 2 8 9 2 4 E  0 4  e 2 5 0 1 2 1 0 2 E  0 4  0 2 4 3 9 9 4 8 0 E  0 4  
0 2 3 6 7 0 6 3 8 E  0 4  0 2 2 8 6 6 9 4 6 E  0 4  o 2 1 9 9 0 7 6 5 E  0 4  0 2 1 0 5 4 8 4 3 E  0 4  
0 2 0 0 7 1 8 4 2 E  0 4  0 8 9 0 6 8 2 2 1 E  0 3  0 1 7 4 1 1 2 7 6 E  0 3  - 0 2 4 2 5 7 2 3 1 E  0 3  

- 0 1 0 6 9 0 2 6 4 E  0 3  0 8 1 8 0 8 0 0 7 E  0 2  0 2 7 0 4 5 1 2 6 E  0 3  0 4 4 7 5 0 7 5 2 E  0 3  
0 6 0 5 2 0 4 0 7 E  0 3  0 7 3 8 6 9 9 2 6 E  0 3  o 8 4 5 4 1 4 0 8 E  0 3  0 9 2 4 4 8 5 6 2 E  0 3  
0 9 7 6 3 2 5 0 1 E  0 3  o 1 0 0 2 2 6 0 4 E  0 4  0 1 0 0 4 2 5 2 0 E  0 4  0 9 6 4 6 6 7 0 4 E  0 3  
0 9 4 6 1 0 3 0 1 E  0 3  - 0 1 3 1 1 3 7 8 7 E  0 4  - 0 2 7 0 9 2 8 1 3 E  0 4  -m34645037E 0 4  

- 0 3 7 5 0 3 8 3 3 E  0 4  - 0 3 7 0 4 2 7 1 2 E  0 4  - 0 3 4 3 3 9 1 1 9 E  0 4  - 0 3 0 2 2 8 0 6 3 E  0 4  
- 0 2 5 3 4 7 0 6 5 E  0 4  - 0 2 0 1 7 3 7 3 3 E  0 4  - 0 1 5 0 5 7 0 6 1 E  0 4  - 0 1 0 2 C 3 4 3 2 E  0 4  
- 0 5 8 9 8 1 1 7 4 E  0 3  - 0 2 1 2 2 9 9 4 3 E  0 3  0 1 0 2 8 9 2 6 0 E  0 3  0 3 5 4 1 6 5 3 5 E  0 3  

0 5 4 2 6 6 1 7 9 E  0 3  0 6 7 1 4 9 3 7 9 E  0 3  0 7 4 5 1 2 5 0 7 E  0 3  0 7 6 8 8 8 3 2 9 E  0 3  
0 7 4 8 6 4 8 5 3 E  0 3  0 2 7 0 8 1 1 3 5 E  0 4  0 3 8 3 5 5 5 7 6 E  0 4  0 4 3 3 7 8 3 4 8 E  0 4  
0 4 3 8 1 4 5 2 5 E  0 4  o 4 0 9 9 3 9 6 9 E  04 0 3 5 9 6 9 0 8 9 E  0 4  o 2 9 5 6 3 5 2 6 E  0 4  
0 2 2 4 1 3 5 2 2 E  0 4  a 1 5 0 0 1 8 2 1 E  0 4  o 7 6 8 7 1 6 5 9 E  0 3  0 7 2 8 1 4 6 9 9 E  0 2  

-0569664C3E 0 3  - 0 1 1 4 7 1 9 2 2 E  0 4  - 0 1 6 5 3 1 9 7 4 E  04 - 0 2 0 8 4 9 2 9 2 E  0 4  
- 0 2 4 4 2 5 3 2 8 E  0 4  - 0 2 7 2 5 2 9 5 7 E  0 4  - 0 2 9 4 6 0 3 8 4 E  0 4  - 0 3 1 0 0 6 2 7 1 E  0 4  
- 0 3 1 9 7 7 1 2 9 E  0 4  - 0 3 3 9 9 6 2 5 0 E  0 4  - * 3 4 9 3 6 5 9 0 E  0 4  - 0 3 5 0 1 3 6 9 8 E  0 4  
- 0 3 4 4 1 0 1 1 0 E  0 4  - 0 3 3 2 7 9 7 5 6 E  0 4  - 0 3 L 7 5 1 8 2 2 E  0 4  - 0 2 9 9 3 4 1 5 7 E  0 4  
- 0 2 7 9 1 6 2 2 8 E  0 4  - 0 2 5 7 7 1 7 3 3 E  0 4  - 0 2 3 5 6 0 8 5 5 E  0 4  - 0 2 1 3 3 2 2 4 9 E  04  
- 0 1 9 1 2 4 7 6 0 E  0 4  - 0 1 6 9 6 8 9 1 6 E  0 4  - 0 1 4 8 8 8 2 2 8 E  0 4  - 0 1 2 9 0 0 3 1 1 E  0 4  
- 0 1 1 0 1 7 8 5 4 E  0 4  - 0 9 2 4 9 4 5 8 6 E  0 3  - 0 7 6 0 0 3 4 8 8 E  0 3  - 0 6 0 7 2 9 9 7 6 E  0 3  

- 0 4 3 9 3 8 4 1 0 E  0 3  - 0 4 7 9 7 7 4 8 7 E  0 3  - 0 4 1 3 5 6 8 5 4 E  0 3  - 0 2 7 9 4 2 4 2 6 E  0 3  
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-046667868E 03 -052592114E 03 -052249579E 03 -047470791E 03 
-.3970574iE 03 -.30C9040?E 03 -.1?502?80E 03 -.86100942€ 0 2  
020917201E 02 o12244869E 03 o21602213E 03 030004280E 03 
037360389E 03 043633012E 03 o48825011E 03 o52969217E 03 
056119978E 03 a58345421E 03 059727043E 03 o60345485E 03 

053225463E 04 051480881E 04 o47238799E 04 041429830E 04 
034767698E 04 027789984E 04 o20892153E 04 o14355847E 04 
083723522E 03 030630322E 03 -015098320E 03 -053199088E 03 

-083762597E 03 -010709761E 04 -012367233E 04 -013405978E 04 
-013889879s 0 4  -031770608E 04 -042138573E 0 4  -016841271E 04 
-047368371E 04 -044911996E 04 -040417685E 04 -034627519E 04 
-02811641712 04 - 0 2 1 3 2 2 6 7 5 E  04 -014573571E 04 -.81067651E 03 
-020881390E 03 033733897E 03 o8213619OE 03 ol2402972E 04 
015938235E 04 018835821E 04 021126320E 04 o22850125E 04 
024052875E 04 010916023E 04 o28600329E 03 -014458540E 03 

-030585992E 03 -028097222E 03 -013459492E 03 e83669710E 02 
033643849E 03 059617056E 03 084319258E 03 010640630E 04 
012502247E 04 013968983E 04 015021793E 04 015663044E 04 
015910613E 04 015793162E 04 o15346386E 04 m14610094E 04 
013626192E 04 021317577E 04 025322549E 04 026564745E 04 
025788885E 04 023590777E 04 o20442727E 04 m16715035E 04 
m12694119E 04 a85977893E 03 045880471E 03 e78182044E 02 

-027400997E 03 -059256155E 03 -e87451638E 03 -011186638E 04 
-013251217E 04 -014949971E 04 -o16301099E 04 -017327719E 04 
-018055971E 04 -034750052E 04 -044766220E 04 -0L9750946E 04 
-051027787E 04 -a49652507E 04 eu46459596E 04 -,42101528E 04 
-m37081725E 04 -031782226E 04 -025486816E 04 -o21400305E 04 
-016564550E 04 -012371701E 04 -085751401E 03 -052984304E 03 
-025426318E 03 -029222799E 02 014801051E 03 028096839E 03 
037372161E 03 o13854227E 04 o19869818E 04 o22778826E 04 
a23385072E 04 022333327E 04 020136398E 04 017198016E 0 4  
013832167E 04 o10279347E 04 m67202105E 03 a32869969E 03 
073065163E 01 -028591793E 03 -054717174E 03 -a77454974E 03 

-096759895E 03 -011269555E 04 -m12540499E 04 -013508700E 04 
-014196830E 04 -024555517E G4 -030753711E 04 -033801128E 04 

060274249E 03 029826334E 04 .44114011E 04 051276391E 04 

-*34534036E 0 4  -*33568728E 0 4  -.3:48?799E g / i  - ,286&4028E Q* 
-025356458E 04 -021897276E 04 -018415928E 04 -015052914E 04 
-011899602E 04 -090163517E 03 -064392383E 03 -041855647E 03 
-022583769E 03 -065013135E 02 a65434308E 02 016754725E 03 
024362469E 03 012325425E 04 a18280039E 04 021288304E 04 
022112135E 04 021368678E 04 o19546988E 04 017030533E 04 
014116150E 04 o11029965E 04 o79407188E 03 049709073E 03 
a22060445E 03 -029765068E 02 -025069096E 03 -044061940E 03 

-059934296E 03 -072765351E 03 -a82706153E 03 -089957199E 03 
-094749919E 03 -014027779E 04 -a16683040E 04 -017894198E 04 
-018028711E 04 -017382325E 04 -o16191169E 04 -014641987E 04 
-012880791E 04 -o11020146E 04 -a91453013E 03 -073193304E 03 
-055874273E 03 -039804858E 03 -025180736E 03 -012108894E 03 
-062787785E 01 o92756365E 02 e17653342E 03 024584391E 03 
o30167364E 03 o23254805E 04 o35529776E 04 o41826931E 04 
043738523E 04 a42531301E 04 a39203494E 04 034532798E 04 
o29116677E 04 o23406122E 04 o17733837E 04 o12337726E 04 
073803451E 03 029650061E 03 -085099869E 02 -040455600E 03 

-066229349E 03 -086066154E 03 -010033604E 04 -010949861E 04 
-011407672E C4 -070660237E 03 -041147578E 03 -021693415E 03 
-093009877E 02 -016636338E 02 o29672813E 02 o56922019E 02 
080543451E 0 2  010114775E 03 a12514029E 03 m 1 5 5 2 2 5 5 3 E  03 
m19281668E 03 023836698E 03 a29163536E 03 03518977OE 03 
041811334E 03 048905457E 03 o56340581E 03 063983852E 03 
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,71713711E 03 019312400E 04 o26929769E 04 031147049E 04 
.32863473E 04 032792891E 04 031496559E 04 .29410722E 04 
026869714E 04 024125286E 04 021362698E 04 018714089E 04 
o16269544E 04 014086208E 04 012195766E 04 010610539E 04 
093284358E 03 o83369393E 03 076162898E 03 071420100E 03 
o5E874302E 03 -023320166E 03 -077600022E 03 -010336577E 04 

-010818753E 04 -098114166E 03 -077934859E 03 -051400016E 03 
-021407434E 03 098413136E 02 040709713E 03 o7001.',764E 03 
o96945735E 03 012096838E 04 014178240E 04 015925989E 04 
017340524E 04 o18432079E 04 019217907E 04 019720065E 04 
019963283E 04 o68104054E 02 -011157102E 04 -017446795E 04 

-019701757E 04 -o19120236E 04 -016640999E 04 -012990388E 04 
-087217659E 03 -042480821E 0 3  - 1 2 6 6 5 5 3 5 E  02 041985710E 03 
o78210565E 03 o10911225E 04 013426774E 04 015357595E 04 
016717356E 04 o17536730E 04 017857981E 04 017730705E 04 
o17209137E 04 -012134913E 04 -030473405E 04 -040592058E 04 

-044714460E 04 -044600208E 04 -041627541E 04 -036862725E 04 
-o31118195E 04 -o25001101E 04 -018953725E 04 -013287015E 04 
-082083040E 03 -038441154E 03 -025884179E 02 025300413E 03 
o45396629E 03 o58118609E 03 064052957E 03 063892327E 03 
058383119E 03 o14291875E 04 o18613529E 04 o19819623E 04 
018734521E 04 o16022005E 04 o12212004E 0 4  e77232661E 03 
o28825915E 03 -020589185E 03 -069121496E 03 -011538441E 04 

-.15839913E 04 -.19751376E 04 -.23233590E 04 -.26267669E 04 
-028850456E 04 -030990723E 04 -032706058E 04 -034020345E 04 
-034961322E 04 -055767947E 04 -068253775E 04 -074464963E 04 
-076046324E 04 -074309897E 04 -070292845E 04 -064806253E 04 
-058476128E 04 -051777799E 04 -045064634E 04 -038592009E 04 
-032537191E 04 -027015790E 04 -022095333E 04 -017806359E 04 
-014151495E 04 -011112806E 04 -086576977E 03 -067436435E 03 
-053222840E 03 083162011E 03 016549900E 04 020692576E 04 
021805001E 04 020737389E 04 018165330E 04 014620171E 04 
010514643E 04 061644050E 03 018061446E 03 -023873006E 03 

-062943123E 03 -098340032E 03 -012957534E 04 -015640948E 04 
-017879303E 04 -019681881E 04 -021068295E 04 de22065378E 04 
-022704505E 04 -097737363E 03 -018063123E 03 o24822638E 03 
041145166E 03 038969813E 03 024588769E 03 028459250E 02 

-022591354E 03 -049005284E 03 -074438942E 03 -097539780E 03 
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how the actual kernel can be generated by the estimated minimum kernel. 
original IRT can be generated by the minimum kernel. 

Hence the 

1000 
800 

av . 
rms 
res. 600 

400 

0 

Fig. 29. Average rms  residual as a func- 
tion of duration for the actual ker- 
nel of Example 3. 

In order to be more convincing yet, the homogeneous equations for the samples of 
The plot of the average rms  the actual kernel itself were solved for durations 1-5. 

residual is shown in Fig. 29,  and indicates 4 to be the "correct" span. The solution 

I '  0 2  3 4 period 
-400 L 0 .  

Fig. 30. Solutions to the homogeneous equations for the actual 
kernel of Example 3. 

for duration 4 is plotted in Fig. 30, and is essentially the same a s  that previously 
obtained from the original IRT. 
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